초록
The KMTNet Supernovae Project utilizes the large $2^{\circ}{\times}2^{\circ}$ field of view of the three KMTNet telescopes to search and monitor supernovae, especially early ones, and other optical transients. A key component of the project is to build a data pipeline with a descent latency and an early alerting system that can handle the large volume of the data in an efficient and a prompt way, while minimizing false alarms, which casts a significant challenge to the software development. Here we present the current status of their development. The pipeline utilizes a difference image analysis technique to discover candidate transient sources after making correction of image distortion. In the early phase of the program, final selection of transient sources from candidates will mainly rely on multi-filter, multi-epoch and multi-site screening as well as human inspection, and an interactive web-based system is being developed for this purpose. Eventually, machine learning algorithms, based on the training set collected in the early phase, will be used to select true transient sources from candidates.