Evaluation of Uncertainty in the Analysis of Uranium Powder Using Alpha Spectrometry with ²³²U Tracer

Jong-Ho Yoon*, Jung Youn Choi, and Gil Hoon Ahn

Korea Institute of Nuclear Nonproliferation And Control, 1534 Yuseong-daero, Yuseong-gu, Daejeon, 305-348 *2bwiths@kinac.re.kr

1. Introduction

Destructive analysis used to verify is that protracted diversion of safeguard nuclear materials has not occurred [1]. Uranium isotope an be analysed using alpha spectrometry. in some experimental groups[2]. Furthermore to obtain meaningful and sufficiently accurate results using alpha spectrometry, it is necessary to demonstrate uncertainty for each steps[3]. The aim of this paper is focused on the evaluation of uncertainty for each procedures in the analysis of uranium isotope using alpha spectrometry[5,6].

2. Methods and Results

2.1 Sample preparation

Uranium Powder were provided by Korea Electric Power Corporation-Nuclear Fuel (KEPCO-NF). The powder samples were weighed out accurately about 1mg using micro balance (XP2U, Mettler-Toledo, Inc.) and then charged into the teflon vessel with 8M HNO₃. Microwave digestion system(START D, Milestone, Inc.) with the Teflon vessels was used to dissolve uranium powder under 400 W at 110°C for 2 hours as soon as putting ²³²U tracer into teflon vessels. After digestion procedure, the samples in the teflon vessels were taken $1 \sim 2 \text{ m}\ell$. The pH was adjusted to 1.7 and controlled with NH₄OH(base) and (1:9) H₂SO₄ (acid) with the litmus paper. For preparation of SUS disk for alpha spectrometry, the solution was put in the electrodeposition cell which was made of teflon. The anode was a platinum wire and operation condition was maintained by 1A for 2hours. The disks were heat by fire until hot after electro- deposition[4].

2.2 Determination of the activity concentration

The activity concentration are determined as follows: $\alpha(x_1)$

$$A(U_i) = \frac{C(U_i)}{C(^{232}U) \times S(g, amount)} \times A(Bq, ^{232}U)$$
(1)

Where, A is activity concentration of uranium isotope, C is net counts of uranium isotope, S is amounts of sample and Ui is isotope uranium(²³⁴U,²³⁵U,²³⁸U respectively). The alpha spectrometry has a great affect on the factor of C in the equation and the measurement of mass and volume also have influence with S and $A(^{232}U$ tracer) respectively. The schematic fish born including schematic diagrams of analysis procedure using alpha spectrometry is shown in Fig. 1.

Fig. 1. The schematic fish-born of analysis procedure.

- 2.3 Evaluation of measurement uncertainty
- All of uncertainty factor is shown in Table. 1.

	Group	Uncertainty type		Expression	Value	Reference
1	Weigh(Balance)	B type	Certification	u_{weigh}	0.00018	certificated by Mettler-Toledo
2	Tracer NPL Pipette	B type	Certification	u _{NPL}	0.005	certificated by NPL
		B type	Certification	$\mathbf{u}_{\mathrm{pip}}$	0.0005	certificated by eppendorf
		B type	Temperature	u _{temp}	0.00031	
3	Volume (Pipette)	B type	Certification	u _{pip}	0.0005	certificated by eppendorf
		B type	Temperature	U _{temp}	0.00031	•
4	Instrument (Alpha spectrometry)	B type	Standard source	u _{ss}	0.018	certificated by Eckert&Ziegler
		A type	Efficiency	u _{eff}	0.016	•
		A type	Yield	u _{yield}	0.11	•
		A type	Peak(^{234,235,238} U)	u _{234peak}	0.004	
				u _{235peak}	0.044	
				U _{238peak}	0.99	•

Table 1. The type of uncertainty and value

In the case of temperature factor in pipette, our lab is reasonable to assume that the temperature does not differ from 20° C by more than 4 degrees.

2.4 Calculation of uranium enrichment from concen-tration of isotope uranium

$$C(U_i, \mu g/g) = \frac{A(U_i, Bq/g)}{\gamma_i(Bq/\mu g)}$$
(2)

where, γ_i = Specific activity of uranium isotope

- $U_i = I_sotope$ uranium
- A = Activity concentration of uranium isotope
- C = Mass of uranium isotope

3. Conclusions

The main resource of uncertainty were identified as uncertainties associated with the measurement using alpha spectrometry which are difficult to reduce.

4. References

- SAFEGUARDS TECHNIQUES AND EQUIPMENT:
 2011 EDITION, INTERNATIONAL NUCLEAR VERIFICATION SERIES No. 1 (Rev. 2), IAEA, 2011.
- [2] M.P Rubio, Montero, A. Martin Sanchez, A.M

474 2015 한국방사성폐기물학회 추계학술대회 논문요약집

Carrasco Lourtau "Isotopic uranium and plutonium analysis by alpha-particle spectrometry" Nuclear Instruments and methods in Physics Research B 213 (2004) 429-433.

- [3] Dr. ASHRAF E. M. KHATER "RECENT DEVELOPMENT IN RADIOCHEMICAL ANALYSIS FOR SAFEGUARDS PURPOSES" Nuclear Safeguards and Physical Protection Department National Center for Nuclear Safety and Radiation Control Atomic Energy Authority Cairo-Egypt, 2005.
- [4] Jong-Ho Yoon etc "The Capability of isotopic uranium analysis in nuclear material at KINAC" Transactionso of the korean Nuclear Society Spring Meeting Jeju, Korea, May 7-8, 2015.
- [5] ISO Guide for "the expression of uncertainty in measurement(GUM)" (1998).
- [6] The IAEA Guide on Quantifying uncertainty in nuclear analytical measurement" (1999).