동전기 제염 잔유 폐기물의 시멘트 고화

구대서*, 성현희, 김계남, 김승수, 김일국, 한규성, 최종원 한국원자력연구원, 대전광역시 유성구 대덕대로 989번길 111 *ndskoo@kaeri,re,kr

1. 서론

원자로 운전 및 관리 과정에 많은 방사성 오염 토 양 및 콘크리트 폐기물이 발생하게 된다. 중·저준 위 방사성폐기물을 한국원자력환경공단 처분장에 영구처분 하는 경우 비용이 매우 비싸다.

이를 해결하기 위하여 동전기 장치를 운전하여 우라늄 농도를 IAEA 및 KINS 허용치 이하로 낮추 어 자체처분 폐기물로 매립하기 위하여, 동전기 장 치 운전 및 연구를 수행해 왔다[1-5]. 동전기 제염 과정에 잔류 폐기물이 많이 발생하게 된다. 이 폐 기물을 처분장에 처분하기 위하여 한국원자력환경 공단 인수기준에 따른 고화체를 제작하여 건전성 평가를 통과해야 한다.

본 연구에서는 시멘트 고화기술을 사용하여, 예 비 실험을 수행하였다. 시멘트 고화시편을 제작 하 여 인장력을 측정하여 비교분석하였다. 또한 시료 및 시멘트 량을 2배로 증가하여 시멘트 고화부피 변화를 조사하였다.

2. 본론

2.1. 1차 시멘트 고화실험

2.1.1 실험방법

막자사발을 사용하여 동전기 제염 잔유 폐기물 덩어리를 작은 입자로 만들었다. 이 폐기물 입자를 시멘트 고화시키기 위하여, 포틀랜드 1종 시멘트를 사용하였다. Table 1과 같은 조건으로 균일하게 혼 합하여 실온에서 개봉상태 유지하고 고화실험을 수 행하였다. 1주 주기로 시멘트고화 진행을 점검하고 사진을 촬영하였다.

시멘트 고화실험 착수 28일 후, 인장력 측정기 (AND 9000S)를 사용하여 시멘트 고화시편 인장력 을 측정하였다. Fig.1은 인장력 측정기를 나타낸 것이며, 이 측정기를 사용하여 시멘트 고화시편 인 장력을 측정하였다. 시멘트 고화시편 파쇄 모양을 육안검사하고 파쇄 형태사진을 촬영하였다.

Table 1. Primary Experimental Condition

Spec- imen	Cement	Water	Metal Oxide Waste	Force (N)
C-1	51% (25.5g)	44% (22g)	5% (2.5g)	344.9
C-2	48% (24g)	42% (21g)	10% (5g)	183.9
C-3	43% (21.5g)	37% (18.5g)	20% (10g)	310.2
C-4	46% (23.0g)	14% (7.0g)	40% (20g)	157.6

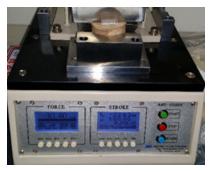


Fig.1. Measurement of Tensile Force.

2.2. 2차 시멘트 고화실험

2.2.1 실험방법

동전기 제염 잔유 폐기물의 시멘트 고화 위하여 포틀랜드 1종 시멘트를 사용하여, Table 2와 같이 시멘트 및 시료 량을 2배로 증가하여 실온 개봉상 태에서 고화실험을 수행하였다.

Table 2. Secondary Experimental Condition

Spec- imen	Cement	Water	Metal Oxide Waste
C-1-1	29.9%	34.3%	35.8%
	(20g)	(23g)	(24g)
C-2-1	32.8%	34.4%	32.8%
	(20g)	(21g)	(20g)
C-1-1	29.9%	34.3%	35.8%
(twice)	(40g)	(46g)	(48g)
C-2-1	32.8%	34.4%	32.8%
(twice)	(40g)	(42g)	(40g)

3. 결과 및 토의

3.1 1차 시멘트 고화

Fig. 2는 인장력 측정과정의 파쇄 된 시멘트 고 화시편을 나타낸 것이다. 시멘트 고화체는 건전하 게 절단 되었다. 시료 C-1 인장력은 344.9 N, 시 료 C-2 인장력은 183.9N, 시료 C-3 인장력은 310.2N 및 시료 C-4 인장력은157.6N 였다.

Fig. 3은 시멘트 고화 시편의 인장력을 나타낸 것이다. 대체로 시멘트 량이 증가할수록 인장력이 감소하는 경향을 보였으며, 시료 함량은 감소할수 록 인장력은 증가하는 경향을 나타내었다.

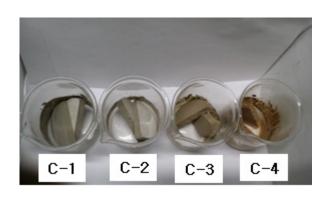


Fig. 2. Fractured Specimen.

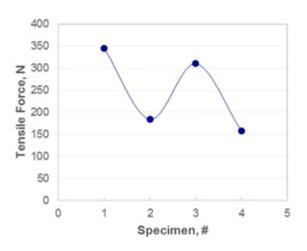


Fig. 3. Tensile Force of Cement Solidification.

3.2. 2차 시멘트 고화

Fig. 4는 2차 시멘트 고화시편을 나타낸 것이다. 시료 및 시멘트 양을 2배로 증가시킬 때, 시멘트 고화체 부피도 약 2배로 증가함을 확인할 수 있었다. 인장력 측정기(AND 9000S) 최대 하중은 200 kgf/ 때 여서, 2차 시멘트 고화시편 인장력 측정이 불가 능하였다.

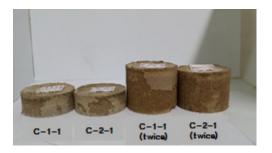


Fig. 4. Specimens of Cement Solidification.

4. 결론

동전기 제염 잔류 폐기물의 영구처분을 위하여, 시멘트 고화 예비 실험을 수행하였다. 시멘트 고화 체를 제작하여 인장력을 측정하였다. 대체로 시멘 트 량이 증가할수록 인장력이 증가하는 경향을 보 였으며, 시료 함량은 감소할수록 인장력은 증가하 는 경향을 나타내었다.

시료 및 시멘트 양을 2배로 증가시킬 때, 시멘트 고화체 부피도 약 2배로 증가함을 확인할 수 있었다. 인장력 측정기(AND 9000S) 최대 하중은 200 kgf/ 때 여서, 2차 시멘트 고화시편 인장력 측정이 불가 능하였다.

5. 참고문헌

- [1] G. N. Kim et al., "Development of complex electrokinetic decontamination method for contaminated soil with uranium", Electrochimica Acta, Vol.86, 49-56 (2012).
- [2] 김계남, 오원진, 원휘준, 정종헌, "동전기방법에 의해 토양 내의 방사능핵종 제거시 Aging 효 과에 관한 연구", 한국 폐기물 학회지, V.21(3), 243-252(2004).
- [3] 김계남외, "동전기적방법을 이용한 스트론튬 오 염토양 제염연구", 대한환경공학회, 2000 추계 학술연구발표회, 259-260 (2000).
- [4] 김계남외, "동전기적방법을 이용한 방사능오염 토양내의 세슘 제거", 한국방사성폐기물학 회, 2003 추계학술발표회, 696-700 (2003).
- [5] 김계남외, "동정기적 방법을 이용한 방사능오염 토양 내의 방사성 핵종 제거", 한국원자력학회, 2004 춘계학술대회, 1-7(2004).