물속의 삼중수소 제거 기초기술 연구

이승엽¹*, 황진하¹, 이재광¹, 백민훈¹, 최태오² ¹한국원자력연구원, 대전광역시 유성구 대덕대로 989번길 111 2(주)클로랜드, 경남 거제시 동부면 함박금길 395 *seungylee@kaeri.re.kr

1. 서론

월성원자력발전소와 같은 가압중수로형 원자로는 가동시 계통에서 발생하는 삼중수소의 생성량이 다른 경수로형 원자로에 비해 상대적으로 많다. 중수로 원 전에서는 중성자 방사화 반응에 의해 삼중수소가 다 량 생성된다. 이렇게 생성된 삼중수소는 일부가 작업 라인 계통에서 기체 혹은 수증기 형태로 배출된다 [1,2]. 국내 중수로원전에서는 삼중수소의 누출과 확산 방지 및 억제를 목적으로 삼중수소 제거시설(TRF; tritium removal facility)을 설치하여 2007년부터 가 동하고 있으며, 계통 내에 존재하는 삼중수소를 분리 하여 제거하고 있다[1]. 하지만, 원자로에서 발생되는 삼중수소를 완벽히 제거하지 못하고 있으며, 일부 외 부로 누출되는 삼중수소의 환경적 문제가 최근 이슈 화되고 있다. 월성원자력발전소 인근 주민들의 체내 삼중수소 농도가 타 지역에 비해 높다는 보고가 있고, 최근 부산시 기장군의 해수담수화시설을 이용한 상수 도 보급 계획이 계속 차질을 빚고 있다.

삼중수소 제거에 있어서, 기체(수증기) 형태보다 는 액체(용액) 형태의 삼중수소를 제거하는 것이 훨씬 더 어렵다. 실제, 현재까지 물속의 삼중수소 를 제거하는 흡착 물질이 거의 알려진 바 없는 실 정이다. 본 연구에서는 강, 호수, 그리고 바다 등에 널리 번식하는 미세조류(microalgae)를 이용하여 물속의 삼중수소를 제거하는 기초기술 연구를 처음 으로 시도하였다.

2. 본론

2.1 실험방법

실험에 사용된 미세조류는 강, 호수 뿐만아니라 바다 등에 널리 생존하는 마이크로 크기의 생명체 로써, 우리는 다양한 미세조류를 확보하여 종 (species)별로 분리하고 장기간에 걸쳐 순수배양하 였다. 배양조건은 미세조류의 광합성 작용을 활발 히 돕기위해 햇빛 및 다른 인공빛들을 선택적으로 조사하였다. 미세조류마다 각기 다른 성장속도 및

성장환경을 고려하여 배양기간을 달리하거나 미량 의 영양물질 등을 주입하였다.

삼중수소 제거 실험을 위해 고농도의 삼중수소 stock solution을 제조하였고, 일정량의 방사성 농 도로 용액시료를 준비하였다. 미세조류의 주입량은 시료마다 조금씩 달랐으나, 최소 10⁴ cells/ml이 되도록 하였다. 실험과정에서 채취된 용액시료들은 0.2-µm로 필터링한 후 LSC로 분석하였다.

본 실험에서는 물속의 삼중수소 뿐만아니라 다른 많은 미량의 용존된 핵종들, 예를들어 세슘, 스트론 튬 및 요오드 등을 더불어 같이 제거할 목적으로 추 가 실험을 수행하였다. 핵종들의 농도는 초기 1 mM 로 준비하였으며, 48 시간 동안 농도 변화를 지속적 으로 관찰하였다. 필요시마다 용액시료를 채취하여 0.2-µm로 필터링한 후, ICP-MS로 분석하였다.

2.2 삼중수소 제거 결과

수 많은 미세조류들을 1년여에 걸쳐 다양하게 테스트하였으며, 여러번의 반복실험을 통하여 실험 결과의 신뢰도를 향상시키고자 하였다. 실험결과, 흥미롭게도 일부 미세조류가 물속의 삼중수소를 상 당량 제거하는 놀라운 결과를 얻을 수 있었다. 시 간에 따라 삼중수소의 제거량이 다소 차이가 있었 고 초기 삼중수소 농도의 영향이 어느정도 있었다.

미량으로 존재하는 다른 핵종들(세슘, 스트론튬, 요오드)도 미세조류에 의해 같이 제거되는 효과를 얻을 수 있었으며, 미세조류에 따라 제거효율에 조 금씩 차이가 있었다.

3. 결론

본 실험에서 일부 미세조류가 놀랍게도 물속의 삼중수소를 24 시간 이내에 상당한 양을 제거한다 는 사실을 처음으로 발견하였다. 이러한 실험결과 를 바탕으로 삼중수소를 생물공학적으로 제거하는 기초기술을 개발하고, 상용화를 목표로 좀 더 효율 적인 삼중수소 제거 시스템을 확립할 계획이다.

4. 감사의 글

본 연구는 2015년도 미래창조과학부의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(원자 력연구개발사업, No. 2012M2A8A5025589).

5. 참고문헌

- [1] 공태영, 김희근, "국내 중수로원전 삼중수소 제 거시설에서의 원소형 삼중수소 피폭방사선량 평가", 대한방사선방어학회 2011 추계학술발표 회 논문요약집. 330-331, 2011.
- [2] 주광태, 김서열, 유보종, 박영환, "원자력시설내 공기중 삼중수소제거 시스템 구축 방안", 대한 방사선방어학회 2009 춘계학술발표회 논문요 약집. 288-289, 2009.