피복관 산화막 방사율의 건식저장 중 사용후핵연료 온도에 대한 민감도 분석

신창환^{*}, 장정남, 서경원, 양용식 한국원자력연구원, 대전광역시 유성구 대덕대로 989번길 111 *shinch@kaeri.re.kr

1. 서론

건식저장 용기내의 사용후핵연료는 decay heat 의 점진적인 감소에 의해 고온의 상태로 긴 시간동 안 유지되게 되며 이러한 고온 상태에 노출된 핵연 료 피복관 및 부품은 열화가 진행된다. 따라서 건 식저장 사용후핵연료의 건전성을 평가하기 위하여 열화기구에 대한 연구가 반드시 필요하다[1]. 현재 알려진 사용후핵연료의 열화 및 그에 따른 기계적 물성 변화는 온도에 가장 민감하게 반응하게 되므 로, 열화의 정확한 평가를 위해서는 온도에 대한 정확도를 향상시켜야 한다. 본 연구에서는 용기내 에서 발생하는 복사열전달에서 연료봉의 방사율 (emissivity)에 의한 민감도를 핵연료봉 최대온도예 측을 위해 제시된 기존의 방법론을 사용하여 평가 하였다.

2. 본론

2.1 건식저장 용기내의 열전달 매커니즘

건식저장용기에서 사용후핵연료의 펠렛에서 발생 한 열은 gap을 통해 피복관으로 전달되고, 피복관 내에서의 전도에 의해 외부로 열을 방출한다. 외부 로 방출된 열은 내부 충진 유체에 의해 자연대류와 복사를 통해 바스켓 혹은 상하부의 플레넘으로 열 을 전달한다. 바스켓구조물은 용기의 내벽까지 열 을 전도에 의해 전달하고 최종 외벽은 외부의 대기 로 자연대류 혹은 강제대류로 방출하게 된다. 용기 내부에서 전도의 경우 대부분 재료의 물성치로 결 정되는 반면 대류와 복사는 다양한 변수에 의해 변 화된다. 특히 복사의 경우는 충진유체와 재료의 온 도, 재료의 방사율, view factor 등에 의해 결정되 며, 방사율의 경우 핵연료 피복관의 표면 산화막에 크게 의존한다.

2.2 사용후핵연료의 복사열전달 초기조건

사용후핵연료의 복사열전달 해석에서 피복관 표 면의 방사율은 피복관의 산화량과 온도에 민감하 다. 사용후핵연료의 산화막 두께는 연소도와 연소 이력에 따라 큰 편차를 보이고 있다. 국내 사용후 핵연료의 산화막두께에 대한 자료[2]에 의하면 Fig. 1에서와 같이 55 GWd/MTU 이상의 연소도에서는 최대 100 ㎞까지 생성될 수 있으며, 42 GWd/MTU 의 저연소도 핵연료에서는 30~60 ㎞ 범위내의 산 화막두께가 형성되는 것으로 알려져 있다. 또한 건 식저장 용기내의 핵연료 온도의 규제기준은 국가별 로 차이를 보이지만 통상 저장 초기에는 400°C 이 하의 온도로 제한되며, 붕괴열 감소에 따라 200°C 부근까지 감소하므로 이 온도 구간에 대한 정확한 자료가 요구된다.

Fig. 1. Cladding oxide thickness vs. Burn-up[2].

2.3 지르코늄 피복관의 방사율 측정 자료 분석

지르코늄을 사용한 피복관의 방사율 측정에 대한 자료는 많이 알려져 있지 않으나, 원자로 안전해석 과 관련한 증기상태에서 고온방사율에 대한 시험자 료가 일부 공개되어 있으며, NRC에서는 산화막두 께에 따른 방사율을 실험자료를 바탕으로 Fig. 2와 같이 제시하고 있다[3]. 하지만 저연소도 사용후핵 연료의 산화막 두께 40~60 /៣의 범위와 400°C 이 하에 해당하는 실험자료는 극히 제한적이다. 이는 안전해석 자체가 보수적인 접근 방법론을 적용하여 두꺼운 산화막 및 고온에서의 평가를 주 목적으로 하기 때문이다.

Fig. 2. Emissivity of oxidized zircaloy [3].

2.4 방사율에 의한 온도 민감도 평가

건식저장 용기내의 핵연료 피복관 최대온도 (peak cladding temperature)를 평가하는 방법은 다양하게 제시되고 있다. 본 연구에서는 Two-region model[4]을 사용하여 방사율에 따른 PCT민감도를 평가하고 그 결과를 Fig. 3에 나타내었다. 평가모 델에서 연료봉의 방사율은 radiative coefficient로 계산되어 적용되고 있으며, wall radiative coefficient 의 연료봉 방사율에 대한 민감도는 거의 없으므로 무시되었다. 연료봉의 산화막에 의한 방사율은 Fig. 2와 같이 0.6~0.9의 범위에 존재하며, 이에 해당하 는 radiative coefficient는 0.3~0.5의 범위를 갖는 다. 이러한 방사율변화에 따른 피복관 온도의 변화 는 외벽의 온도가 낮을수록 크게 나타나고 있다. 외벽온도를 100℃로 가정한 경우 계산한 범위내에 서 온도차이는 18.3℃로 최대피복관온도 대하여 10%가량의 편차를 유발할 수 있으며, 이는 장기간 의 저장기간을 고려할 때 사용후핵연료 열화량 및 기계적 물성에 영향을 끼칠 수 있는 범위이다.

Fig. 3. Sensitivity by cladding emissivity.

건식저장 용기내의 핵연료봉의 방사율에 의한 핵 연료 피복관 최대 온도 예측의 민감도를 평가하였 다. 이로부터 다음과 같은 결론을 도출하였다.

- 산화피복관의 방사율에 대한 실험자료는 경수로
 사고조건에 대하여 주로 생산되었고, 건식저장에
 적용 가능한 데이터는 극히 제한적이다.
- 확보 가능한 자료를 이용한 민감도 평가를 통해 산화막 방사율에 따라 10%이상의 사용후핵연료 온도예측의 편차를 유발할 수 있으며, 이는 열화 에 큰 영향을 끼칠 수 있다.

따라서 건식저장의 열화 예측 정확도 향상을 위해 국내 사용후핵연료의 피복관 산화량 및 건식저장 온도구간에서의 방사율에 대한 실험을 수행할 예정 이다.

4. 감사의 글

본 연구는 2014년도 산업통상부의 재원으로 한 국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다. (No. 20141710201660)

5. 참고문헌

- [1] B. Hanson, et al., "Gap Analysis to Support Extended Storage of Used Nuclear Fuel Rev.0", PNNL-20509 (2012).
- [2] J. S. Kim, et al., "A Study on the Initial Characteristics of Domestic Spent Nuclear Fuels for Long Term Dry Storage", NET, 45, 337-384 (2013).
- [3] G. A. Reymann, "MATPRO-Version 10: A Handbook of materials properties for use in the analysis of Light Water Reactor Fuel Rod Behavior", TREE-NUREG-1180 (1978).
- [4] R. D. Manteufel & N. E. Todreas, "Effective Thermal Conductivity and Edge Conductance Model for a Spent-Fuel Assembly", NT, 105, 421-440 (1994).