Analysis of calcium phosphate nanoclusters using the TOF-MEIS

  • Jung, Kang-Won (Department of New Biology, DGIST) ;
  • Park, Jimin (Department of Materials Science and Engineering, Seoul National University) ;
  • Yang, Ki Dong (Department of Materials Science and Engineering, Seoul National University) ;
  • Nam, Ki Tae (Department of Materials Science and Engineering, Seoul National University) ;
  • Moon, DaeWon (Department of New Biology, DGIST)
  • 발행 : 2015.08.24

초록

We have developed a TOF-MEIS system using 70~100 keV He+. A TOF-MEIS system was designed and constructed to minimize the ion beam damage effect by utilizing a pulsed ion beam with a pulse width < 1 ns and a TOF delay-line-detector with an 120 mm diameter and a time resolution of 180 ps. The TOF-MEIS is an useful tool for interfacial analysis of the composition and structure of nano and bio systems. Our recent applications are reported. We investigated the effect with Polyaspartic Acid (pAsp) and Osteocalcin on the initial bone growth of calcium hydroxyl appatite on a carboxyl terminated surface. When pAsp is not added to the self-assembled monolayers of Ca 2mM with Phosphate 1.2 mM, the growth procedure of calcium hydroxyl appatite cannot be monitored due to its rapid growth. When pAsp is added to the SAMs, the initial grow stage of the Ca-P can be monitored so that the chemical composition and their nucleus size can be analyzed. Firstly discovered the existence of 1-nm-sized abnormal calcium-rich clusters (Ca/P ~ 3) comprised of three calcium ions and one phosphate ion. First-principles studies demonstrated that the clusters can be stabilized through the passivation of the non-collagenous-protein mimicking carboxyl-ligands, and it progressively changes their compositional ratio toward that of a bulk phase (Ca/P~1.67) with a concurrent increase in their size to ~2 nm. Moreover, we found that the stoichiometry of the clusters and their growth behavior can be directed by the surrounding proteins, such as osteocalcin.

키워드