Electrical Properties of Tungsten Oxide Interfacial Layer for Silicon Solar Cells

  • Oh, Gyujin (Department of Physics, Hanyang University) ;
  • Kim, Eun Kyu (Department of Physics, Hanyang University)
  • 발행 : 2015.08.24

초록

There are various issues fabricating the successful and efficient solar cell structures. One of the most important issues is band alignment technique. The solar cells make the carrier in their active region over the p-n junction. Then, electrons and holes diffuse by minority carrier diffusion length. After they reach the edge of solar cells, there exist large energy barrier unless the good electrode are chosen. Many various conductor with different work functions can be selected to solve this energy barrier problem to efficiently extract carriers. Tungsten oxide has large band gap known as approximately 3.4 eV, and usually this material shows n-type property with reported work function of 6.65 eV. They are extremely high work function and trap level by oxygen vacancy cause them to become the hole extraction layer for optical devices like solar cells. In this study, we deposited tungsten oxide thin films by sputtering technique with various sputtering conditions. Their electrical contact properties were characterized with transmission line model pattern. The structure of tungsten oxide thin films were measured by x-ray diffraction. With x-ray photoelectron spectroscopy, the content of oxygen was investigated, and their defect states were examined by spectroscopic ellipsometry, UV-Vis spectrophotometer, and photoluminescence measurements.

키워드