유전학의 유전자형-표현형을 적용한 수정된 이진 입자군집최적화

Modified Binary Particle Swarm Optimization using Genotype-Phenotype in Genetics

임 승 균, 이 상 욱 목원대학교 정보통신융합공학부 Seungkyun Lim, Sangwook Lee
Information and Communication Convergence
Engineering, Mokwon University

요약

본 논문에서는 유전알고리즘의 유전자형-표현형을 사용한 수정된 이진 입자군집최적화의 두 번째 버전을 소개한다. 첫 번째 버전의 수정된 이진 입자군집최적화는 위치 정보에 유전학의 표현형을 사용한 반면에 제안하는 버전은 유전학의 유전자형을 사용한다. 이진 정보만을 제공하는 표현형에 비해 연속 공간 전체를 탐색공간으로 제공하는 유전자형 정보를 사용하여 해 공간을 보다 넓은 공간으로 만들 수 있다. 10개의 실험 평가 함수에 실험한 결과, 두 번째 버전은 탐색 공간이 넓고 지역최적해가 많은 함수에서 우수한 결과를 보였다.

I. 서론

이진 입자 군집 최적화 (Particle Swarm Optimization, PSO)는 작은 유기체들의 행동특성으로부터 영감을 얻었 으며, 연속적인 문제 공간을 위한 최적화 기법으로 1995 년 Kennedy와 Eberhart에 의해 처음 소개되었다. PSO는 모든 해를 위치와 속도로 표현하며, 위치와 속도 갱신함 수를 사용하며 최적의 해를 찾아간다. 1997년, Kennedy and Eberhart는 PSO를 조합최적화 문제에 적용하기 위 해 이진 버전의 PSO를 제안하였다 (Binary Particle Swarm Optimization, BPSO) [1]. BPSO는 기존 PSO와 속도 갱신하는 방법은 동일하나 위치 갱신하는 방법에 있어서 현재의 위치와 갱신된 속도의 합으로 위치 갱신 을 수행하는 PSO와는 달리 시그모이드 함수에 갱신된 속도 정보 입력한다. 시그모이드 함수는 입력된 값을 0 과 1의 값으로 출력 하며, 시그모이드 함수의 출력 값으 로 BPSO의 위치 값이 갱신된다. 2008년, Sangwook Lee 는 위치 갱신에 현재 위치를 반영하지 않는 기존의 BPSO를 유전알고리즘의 유전자형-표현형 개념을 적용하 여 위치 갱신에 현재 위치를 반영하는 수정된 이진 입자 군집최적화를 (Modified Binary Particle Swarm Optimization, MBPSO) 소개하였다[2], 기존 MBPSO는 속 도갱신에 있어 표현형의 이진정보를 사용하였다. 이진정 보 특성으로 속도 갱신에 있어서 탐색 영역의 불연속 공 간이 생기는 문제를 해결하기 위해, 본 논문에서는 속도 갱신에 유전자형의 연속 공간 정보를 적용한 이진 입자 군집최적화 버전 2 (Modified Binary Particle Swarm Optimization (Version 2), MBPSO2)를 소개한다.

본 논문의 구성은 아래와 같다. 2장에서는 MBPSO를 수정한 MBPSO2를 소개한다. 3장에서는 MBPSO2의 실험 결과를 소개하며, 4장의 결론을 끝으로 마친다.

II. MBPSO2

1 MBPSO

MBPSO는 PSO와 BPSO의 속도 및 위치 갱신 함수를 아래와 같이 변경한다. PSO와 BPSO의 자세한 정보는 [3] 에서 자세히 확인 할 수 있다.

$$\begin{split} v_{i,j}(t+1) &= w v_{i,j}(t) + c_1 R_1 (x_{pBest,i,j} - x_{p,i,j}(t) \\ &+ c_2 R_2 (x_{pBest,i,j} - x_{p,i,j}(t)) \end{split} \tag{1}$$

$$x_{g,i,j}(t+1) = x_{g,i,j}(t) + v_{i,j}(t+1) \tag{2}$$

$$x_{p,i,j}(t+1) = \begin{cases} 0 \text{ if } rand() \ge S(x_{g,i,j}(t+1)) \\ 1 \text{ if } rand() < S(x_{g,i,j}(t+1)) \end{cases}$$
(3)

위의 식(3)에서 $S(\bullet)$ 의 정의는 아래와 같다.

$$S(x_{g,i,j}(t+1)) = \frac{1}{1 + e^{-x_{g,i,j}(t+1)}}$$
(4)

식(3)은 표현형으로 변경된 BPSO의 위치 갱신 함수로 시그모이드 함수에 x_a 값을 대입한다. x_p 는 식(3)의 시그

모이드 함수 결과에 의해 0또는 1의 이진값을 갖는다. 식(2)의 x_g 는 유전자형으로 현재 값과 갱신된 속도의 합으로 갱신된다. 식(1)은 속도 갱신함수로 0또는 1의 값을 가지는 표현형으로 $(x_{p Gest},\ x_p)$ 및 $(x_{p Hest},\ x_p)$ 의 차를 계산하여 $0,\ -1$ 또는 1의 3가지 경우만 계산결과로 나올수 있다. 때문에 BPSO의 $v_{i,j}$ 계산결과는 PSO에 비해 탐색범위가 불연속임과 동시에 매우 협소하다.

2. MBPSO2

MBPSO의 속도 갱신 식(1)에서 우수해와 현재해의 차이 값이 (0, 1, -1)의 3가지 경우만 존재한다. 때문에 속도 영역이 불연속 공간이 생기는 것을 확인할 수 있었다. 이러한 단점을 보안하기 위해 우수해와 현재해의 차이를 계산하는 방식에 있어서, 이진 값만 가지는 표현형을 사용하는 것을 전체 실수 값을 가지는 유전자형으로 변경하여 MBPSO의 두 번째 버전(MBPSO2)을 제안한다. 식(5)는 MBPSO2의 속도 갱신 식을 보여준다.

$$\begin{split} v_{i,j}(t+1) &= wv_{i,j}(t) + c_1R_1(x_{g \; G\!e\!st, i, j} - x_{g, i, j}(t) \\ &+ c_2R_2(x_{g \; R\!e\!st, i, j} - x_{g, i, j}(t)) \end{split} \tag{5}$$

 x_p 는 $S(x_g)$ 를 통해 생성된 0과 1사이의 난 수 값이 0에 가까우면 0이 될 확률이 높고, 1에 가까우면 1이 될 확률이 높다. 따라서 MBPSO2를 통해 표현형 x_p 를 유전형 x_g 로 변경하는 것은 0, 1의 탐색범위에서 실수 전체의 탐색 공간으로 확장한다는 측면에서 보다 더 표준 PSO의 개념에 적합하다 볼 수 있다.

Ⅲ. 실험결과

아래 표[4]는 MBPSO와 MBPSO2의 평가함수 실험 결과이다. 평가함수의 정보는 [4]에서 자세히 살펴 볼 수 있다. 10개의 평가 함수 중에서 탐색 공간이 넓고 지역 최적해가 많은 f_4 , f_6 , f_7 , f_8 , f_9 , f_{10} 함수에서 MBPSO2가 MBPSO보다 우수한 반면, 비교적 단순하고 지역 최적해가 적은 f_1 , f_2 , f_3 함수에서는 탐색공간이 적은 MBPSO가 우수하거나 비슷한 결과를 보였다.

Ⅳ. 결론

본 논문에서는 MBPSO의 속도갱신방법에서 이진 탐색 공간의 표현형 정보를 사용하는 것을 실수 탐색공간의 유전자형 정보를 사용하는 것으로 수정한 MBPSO2를 소개하였다. 10개의 평가함수에 실험한 결과, MBPSO를 수정한 MBPSO2의 성능이 더 우수했다. 특히, 국소 최소점 및 탐색공간이 많은 함수에서 더욱 우수했다. 그 이유는 해의 탐색 범위가 넓어 다양성을 유지하면서 최적값을 찾기 때문으로 보인다.

표4. 비교 결과(돌연변이 있음)

F	MBPSO2	MBPSO
f_1	0.000122±0.0004	0.000213±0.000014
f_2	0.0000018±0.00054	0.00009±0.000002
f_3	0.0 ± 0.0	0.0±0.0
f_4	0.2352596±0.22	2.7598±5.29545
f_5	0.951±0.000136	0.998004±0.0
f_6	0.00257±0.0096	0.007303±0.000422
f_7	9.274071±4.39371	7.12381±3.650294
f_8	1.12134±0.223	4.637563±0.623
f_9	26669.3±0.615	26769.1±0.0
f_{10}	32.4132±8.90821	46.82±7.355633

■ 참 고 문 헌 ■

- [1] Kennedy J, Eberhart RC, "Particle swarm optimization," Proceedings of IEEE international conference on neural networks, Vol. 4, pp. 1942-8, 1995.
- [2] Sangwook Lee, Sangmoon Soak, Sanghoun Oh, Witold Pedrycz, Moongu Jeon. "Modified binary particle swarm optimization," Progress in Natural Science, Vol. 18, No. 9, pp. 1161-6, 2008.
- [3] Eberhart RC, "A discrete binary version of the particle swarm algorithm," Proceedings of 1997 conference systems man cybernetics, pp. 4104-8, 1997.
- [4] http://www.denizyuret.com/pub/aitr1569/node19.html