
Abstract

In this paper, an estimation scheme based on an augmented 
sigma-point Kalman filter to estimate the state of charge (SOC) of 
the battery is presented, where the battery parameters of the series 
resistance (Ro), diffusion capacitance (C1) and resistance (R1) are 
also estimated through the recursive least squares (RLS) for better 
accuracy of the SOC. The effectiveness of the proposed method is 
verified by simulation results.

1. Introduction

Estimation of the SOC and SOH (state of health) of batteries is 
important in the view of optimal performance, availability, and 
reliability of the battery. Direct measurement of the SOC and SOH 
is difficult due to the complicated chemical operation inside the 
battery [1]. There are many research results which have been 
proposed for the SOC and SOH estimation such as Coulomb 
counting, OCV (open-circuit voltage)-based method, Kalman filter, 
artificial neural network (ANN), etc.

Coulomb counting is the simplest method, based on the 
integration of the battery current. However, this method demands 
the accurate initial SOC and calibration. If not accurate, the 
accumulation of error will lead to the inaccurate SOC value.  
Although the SOC estimation based on the OCV is the accurate and 
simple algorithm, the online measurement of the OCV is almost 
impossible [1]. Recently, some intelligent methods, which use the 
ANN or the fuzzy logic, have been introduced for the battery 
management system (BMS). Even though these methods can 
provide the accurate value of the SOC, due to the heavy burden of 
computation, it is challenging for a real-time implementation. 
Another SOC estimation algorithm using an adaptive state observer 
such as extended Kalman filter, sigma-point Kalman filter, etc. 
have drawn a lot of attention since they give a precise result with an 
simple implementation. Nevertheless, the drawback of these 
methods is that an accurate model of the battery is required. The 
variation of the battery parameters with aging, temperature, 
humidity, etc. may lead to inaccurate estimation.

This paper proposes an algorithm to estimate the SOC of the 
battery with associated parameter calibration to quantify the battery 
parameter uncertainties for more precise SOC estimation. The 
simulation results show that the estimation error of the SOC is 
about 3.6% in the case of 50% error of the parameter.

2. Battery Modeling

The equivalent circuit of a lithium-ion battery is shown in Fig. 1, 
where the voltage source, Voc, is modeled for the OCV of the 
battery. The OCV varies with the variation of the SOC and is 
affected by hysteresis effects [2]. For simplicity, the hysteresis 
effect is not considered in this work. R0 is the internal resistance, 
which represents the equivalent series resistance of the battery, and
the diffusion effect is represented by the parallel circuit of R1 and 
C1. The initial values of these parameters at the beginning state of 
cycling are obtained by experiment which has been introduced in 
[3].

From Fig. 1, the discrete state equation for the battery modeling
is expressed as [4]. 

Fig. 1. Battery  model.
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where xk is a state vector, V1 is the voltage across the diffusion 
circuit, Cn is the capacity of the battery, Dt is the sampling time, Ib,k

is the battery discharging current, k is the kth-sampling instant, and 
Vt is the terminal voltage. In this modeling, the SOC and V1 are 
chosen as the state variables, and Ib,k and Vt are the input and output 
variables, respectively.

From (1), the SOC is calculated by Coulomb counting method, 
where the accumulation of error may be included. Then, with 
Kalman filter algorithm, the SOC estimation process is calibrated 
[4]. 

3. Principle of Proposed Estimation

i) Augmented sigma-point Kalman filter (ASKF)
A sigma-point Kalman filter is a combined algorithm of 

unscented transform (UT) and Kalman filter (KF). In this work, the 
ASKF is applied for the battery state estimation.

ii) Recursive least squares with multiple forgetting factors:
There are two main advantages of the RLS algorithm for 

parameter estimation. First, the RLS with forgetting factor is simple 
and easy to implement. Second, it is appropriate to apply to the 
system which drifts very slowly such as the battery parameters.

Moreover, the conventional RLS has the covariance “wind-up”
problem and the algorithm has no way of knowing if there are some 
errors due to one or more parameters. The RLSMF algorithm 
shown in the table 1 can overcome these problems of the standard 
RLS [5].

iii) Implementation for lithium-ion battery
a. OCV versus SOC
Fig. 2 shows the trajectory of OCV versus SOC. By using curve 

fitting, the relationship between OCV and SOC can be expressed as
3 2OCV  1.18 SOC -2.105 SOC +1.299 SOC 3.658.= ´ ´ ´ + (3)

From Fig. 1 and (1), the terminal battery voltage can be rewritten 
as
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Fig. 2. OCV versus SOC.

Fig. 3. Flow diagram of dual algorithm of ASKF & RLS.
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b. Calculation flow
At first, the ASKF is applied to estimate the SOC and the 

diffusion voltage V1. For better performance, this step is operated 
for several calculation loops before proceeding to the next step. 
Then, RLS is employed to estimate the battery parameters. From 
(3) to (7), the battery terminal voltage can be expressed as
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Before advancing to the second step, it is noted that the values of 
current, SOC and V1 should be known. Substituting (8), (9) and 
(10) into the equations in Table 1, the estimated battery parameters 
can be obtained. The “^” indicates the estimated value. Herein, ˆky

and yk are the estimated and measured voltages, respectively. Fig. 3 
shows the flow chart of the proposed method.

4. Simulation Results

Simulation tests have been carried out for a lithium-ion battery, 
which is modeled as shown in Fig. 1. Fig. 4 shows the input current 
profile and the battery terminal voltage. The voltage curve is 
obtained by discharging a Li-ion battery cell 0.85-Ah with a pulse 
current 0.32A.

Fig. 4. Terminal voltage with the pulsed current discharge.

Fig. 5. SOC estimation under parameter variation using ASKF. (a) Without 
RLS. (b) With RLS (proposed method).

The relationships of the parameters are derived from the pulsed 
current and voltage waveforms as [3]
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Fig. 5 shows the estimated SOC values by the ASKF with and 
without the adaptation of the battery parameters by the RLS 
algorithm under the condition of the battery parameter variation.
The reference SOC is obtained by an accurate Coulomb counting 
progress. From the figure, the estimation error of the method
without the adaptation is about 3.6% whereas that of the proposed 
method as shown in Fig. 5(b) is 1.57%.

5. Conclusions

In this research, a novel estimation scheme to estimate the SOC 
of the battery has been presented, where the ASKF algorithm is
employed. The estimation accuracy has been improved by using the 
battery parameters updated by the RLS in the ASKF algorithm. The 
proposed scheme has been verified by the simulation results. 
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Table 1. RLS algorithm with forgetting factor. 
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