전압 레벨 증가를 위한 Cascaded H-bridge 멀티레벨 인버터 개발

심현우*, 이준석*, 이교범*, 이대봉** 아주대학교*, 우진산전**

Cascaded H-bridge Multilevel Inverter Scheme for Increasing Voltage Level

Hyun Woo Sim*, June Seok Lee*, Kyo Beum Lee*, Dae Bong Lee** Ajou University*, Woojin Industrial System Co.**

ABSTRACT

본 논문은 Cascaded H bridge 멀티레벨 인버터의 출력 전압레벨 수의 증가를 위한 모델과 스위칭 기법을 제안한다. 제안하는 모델은 기존의 Cascaded H bridge 멀티레벨 인버터 구조에서 각 H bridge 모듈의 출력단에 변압기를 연결하고, 변압기 2차측을 직렬로 연결한 모델이다. 이 구조에서 다수의 변압기의 턴비는 동일하고, 1개의 변압기 턴비만이 다른 턴비를 갖게된다. 따라서 1개의 변압기 턴비를 조절하여 출력전압의 전압레벨수를 증가시킬 수 있다. 스위칭 방법은 기존에 멀티레벨인버터에서 주로 사용되는 Level shifted PWM 방식을 이용하여 간단하게 구현할 수 있다. 제안하는 모델의 담당성을 확인한다.

1. 서 론

최근 고전압, 고출력 산업 응용분야가 증가함에 따라 멀티레벨 인버터의 연구가 활발히 진행되고 있다. 그중 Cascaded H bridge 멀티레벨 인버터는 다수의 H bridge 모듈을 직렬로 연결함으로써 전압 범위를 손쉽게 증가시킬 수 있고, 유지 및보수가 간편하고 높은 신뢰성을 갖는 장점이 있다. 특히 Cascaded H bridge 멀티레벨 인버터의 경우 출력전압 레벨 수를 증가시키기에 가장 효율적인 방법으로 알려져 있다. 하지만 전압 레벨 증가를 위해 다수의 H bridge모듈과 함께 독립적인 입력전압원을 확보해야 된다는 단점이 있다. 12 21

따라서 본 논문에서 제안하는 Cascaded H bridge 멀티레벨인버터 모델은 각 H bridge셀의 출력단에 변압기를 연결한 형태로서, 독립적인 입력전원이 필요하지 않고 한 개의 모듈의변압기 턴비를 조절해 다수의 전압 레벨을 얻을 수 있다. 제안한 모델에서 원하는 전압레벨을 얻기 위한 스위칭 방식은 기존의 멀티 캐리어 PWM방식 중 Level shifted PWM방식을 기반으로 하여 간단하게 구현할 수 있다^[3]. 제안하는 모델과 스위칭방식은 시뮬레이션을 통해 그 타당성을 검증한다.

2. 제안하는 Cascaded H-bridge 멀티레벨 인버터 모델

그림 1은 제안하는 Cascaded H bridge 멀티레벨 인버터의 회로도이다.

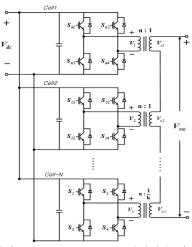


그림 1 제안하는 Cascaded H-bridge 멀티레벨 인버터 회로도 Fig. 1 Configuration of proposed cascaded H-bridge multilevel inverter

각 H bridge셀의 출력단에 변압기를 연결하고, 변압기 2차측을 직렬로 연결한 형태이다. 따라서 출력측과 입력측이 절연되어 독립적인 입력전원이 필요없게 된다. 또한, N개의 H bridge셀로 구성되어있을 때, (N 1)개의 Main bridge와 1개의 Sub bridge로 분류할 수 있고, 각셀의 변압기 턴비는 다음과 같다.

$$\begin{cases} Mainbridge - n : 1\\ Subbridge - n : \frac{1}{k} (k=2,3) \end{cases} \tag{1}$$

여기서 n은 1차측 턴비를 나타내고, k는 Sub bridge의 턴비를 나타내는 변수이다.

(N 1)개의 셀은 모두 같은 변압기 턴비를 갖고, Sub bridge 셀은 Main bridge의 1/2 혹은 1/3의 턴비를 갖는다. 이러한 Sub bridge의 턴비를 달리해줌으로써 전압레벨의 수를 증가시킬 수 있다. 따라서 Main bridge만으로 출력할 수 없는 전압을 Sub bridge의 낮은 출력전압을 이용하여 Main bridge출력 간의 중간 전압 레벨 수를 증가시킨다. 이 때, Sub bridge의 변압기 턴비를 나타내는 k는 2또는 3의 값의 제한적인 값을 갖게되는데, k가 4이상일 경우는 선형적으로 전압레벨을 생성할 수없는 구간이 생긴다.

표 1에 H bridge셀의 개수와 Sub bridge 변압기 턴비에 따

른 전압레벨 수를 나타내었다.

표 1 출력전압 레벨 수

Table 1 Number of output voltage levels

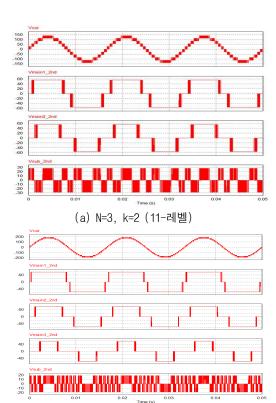
H bridge	Turn ratio (Sub bridge)			
개수	n : 1	n: 1/2 (k=2)	n: 1/3 (k=3)	
2	5	7	9	
3	7	11	15	
4	9	15	21	
N	2N+1	4N 1	6N 3	

3. 정현 펄스폭 변조방식 기반의 스위칭 방법

다수의 반송파를 이용한 정현 펄스폭 변조 방식인 Level shifted PWM(LS PWM)방식을 사용하여 제안하는 모델을 구현할 수 있다. 먼저 (N=3, k=2)인 경우 각 전압레벨에 따른 스위칭 상태를 표2와 같이 나타낼 수 있다.

표 2 출력전압 레벨에 따른 스위칭 상태(*N=3, k=2*) Table 2 Switching states according to output voltage levels

전압 레벨	Main1	Main2	Sub(<i>k</i> =2)
0	0	0	0
1	0	0	1
2	2	0	0
3	2	0	1
4	2	2	0
5	2	2	1


위와같은 경우 Main bridge의 출력전압은 Sub bridge의 2 배이기 때문에 스위칭상태를 '2'로 나타내었다. 각 전압 레벨과스위칭 상태에 따라 다수의 반송파를 사용하는 기존의 LS PWM방식을 적용하게 된다. 따라서 Main bridge는 기존의스위칭 방식과 동일하게 동작한다. 반면, Sub bridge는 각 Main bridge의 출력전압의 중간전압을 만들어 주기 위해 모든 전압레벨 영역에서 스위칭 동작을 하게 된다. 따라서 한주기동안 평균 스위칭 주파수는 Main bridge에 비해 훨씬 높게 된다.

4. 시뮬레이션 결과

제안한 모델과 스위칭 기법의 타당성을 검증하기 위해 PSIM을 이용하여 시뮬레이션을 수행하였다. 시뮬레이션은 입력전원 450V, 스위칭 주파수 10kHz, Main bridge의 턴비는 8:1로 진행하였다.

시뮬레이션은 두 가지 경우에 대해 진행하였다. 먼저 그림 2(a)는 N=3, k=2인 경우이다. H bridge 모듈 3개를 직렬 연결하고 보조 H bridge의 변압기 턴비가 1/2인 경우로, 기존의 회로는 7레벨의 전압을 얻을 수 있지만, 제안한 방식에서는 11레벨의 전압을 출력하는 것을 볼 수 있다. 또한, 메인 H bridge의 출력전압은 기존의 Level shifted PWM방식의 출력과 동일한 것을 볼 수 있고, 보조 H bridge의 스위칭을 통해 더 높은 전압레벨을 얻을 수 있다.

그림3(b)는 N=4, k=3인 경우의 시뮬레이션 결과이다. 마찬가지로 4개의 H bridge를 연결한 경우 기존에 9레벨의 전압을 출력할 수 있는데 비해, 제안한 방식에서는 21레벨의 출력전압을 얻을 수 있다.

(b) N=4, k=3 (21-레벨)

그림 2 제안한 모델의 시뮬레이션 결과

Fig. 2 Simulation results of proposed multilevel inverter scheme

5. 결 론

본 논문에서는 Cascaded H bridge 멀티레벨 인버터의 출력 전압 레벨의 증가를 위한 모델과 스위칭 방법을 제안하였다. 제안한 모델은 기존의 Cascaded H bridge 멀티레벨 인버터의 출력단에 변압기를 연결된 형태로, 기존의 LS PWM방식을 사용하여 높은 출력 전압 레벨을 얻을 수 있다. 제안된 모델의 타당성을 시뮬레이션을 통해 검증하였다.

본 논문은 국토교통부 철도기술연구사업의 연구비 지원을 받아 수행한 연구결과입니다.(13PRTD C063745 02)

참 고 문 헌

- [1] J. Rodriguez, J. S. Lai and F. Z. Peng, "Multilevel Inverters: A Survey of Topologies, Controls, and Applications," IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724 738. Aug. 2002.
- [2] M. Malinowski, K. Gopakumar, J. Rodriguez and M. A. Perez, "A Survey on Cascaded Multilevel Inverters," IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 2197 2206, July 2010.
- [3] B. P. McGrath and D. G. Holmes, "Multicarrier PWM strategies for multilevel inverters," IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 858 867, Aug. 2002.