Advanced Neighbor Embedding based on Support Vector Regression

SVR에 기반한 개선된 네이버 임베딩

  • Eum, Kyoung-Bae (Dept. of Computer and Information Eng., Kunsan National University) ;
  • Jeon, Chang-Woo (Dept. of Computer and Information Eng., Kunsan National University) ;
  • Choi, Young-Hee (Dept. of Computer and Information Eng., Kunsan National University) ;
  • Nam, Seung-Tae (Dept. of Computer and Information Eng., Kunsan National University) ;
  • Lee, Jong-Chan (Dept. of Computer and Information Eng., Kunsan National University)
  • 엄경배 (군산대학교 컴퓨터정보공학과) ;
  • 전창우 (군산대학교 컴퓨터정보공학과) ;
  • 최영희 (군산대학교 컴퓨터정보공학과) ;
  • 남승태 (군산대학교 컴퓨터정보공학과) ;
  • 이종찬 (군산대학교 컴퓨터정보공학과)
  • Published : 2014.10.28

Abstract

Example based Super Resolution(SR) is using the correspondence between the low and high resolution image from a database. This method uses only one image to estimate a high resolution image and can get the larger image than 2 times. Example based SR is proposed to solve the problem of classical SR. Neighbor embedding(NE) has been inspired by manifold learning method, particularly locally linear embedding. However, the poor generalization of NE decreases the performance of such algorithm. The sizes of local training sets are always too small to improve the performance of NE. We propose the advanced NE baesd on SVR having an excellent generalization ability to solve this problem. Given a low resolution image, we estimate a pixel in its high resolution version by using SVR based NE. Through experimental results, we quantitatively and qualitatively confirm the improved results of the proposed algorithm when comparing with conventional interpolation methods and NE.

표본기반 초해상도(Super Resolution 이하 SR) 기법은 데이터베이스에 저장된 고해상도 영상의 패치와 저해상도 영상의 패치 사이에 대응관계를 이용하여, 저해상도의 입력영상에 가장 유사한 고해상도 패치를 덧붙여서 고해상도를 구성하는 방식이다. 이러한 방식은 한 장의 영상만으로 고해상도 영상을 얻을 수 있고, 위의 과정을 반복하여 2배 이상의 확대된 영상을 얻을 수 있어서 기존의 고전적 SR의 문제점을 해결할 수 있다. 표본기반 SR의 방법들 중 네이버 임베딩(Neighbor Embedding 이하 NE) 기법의 기본 원리는 지역적 선형 임베딩이라는 매니폴드 학습방법의 개념과 같다. 그러나 네이버 임베딩의 빈약한 일반화 능력으로 인하여 알고리즘의 성능을 크게 저하시킨다. 이유는 국부학습 데이터 집합의 크기가 너무 작아서 NE 알고리즘의 성능을 현저히 저하시킨다. 본 논문에서는 이와 같은 문제점을 해결하기 위해서 일반화 능력이 뛰어난 Support Vector Regression(이하 SVR)기반 개선된 NE를 제안하였다. 저해상도 입력 패치가 주어지면 SVR 기반 개선된 NE를 이용하여 고해상도의 해당 화소 값을 예측하였다. 실험을 통하여 제안된 기법이 기존의 보간법 및 NE 기법 등에 비해 정량적인 척도 및 시각적으로 향상된 결과를 보여 주었다.

Keywords