Research on High-speed Event Detection based on Fuzzy Rule-based Quine-Maccluskey for Streaming Big Data

퍼지 기반 퀸-맥클러스키 규칙 감축 기법을 이용한 대용량 스트리밍 데이터의 고속 이벤트 탐지 기법 연구

  • Park, Na-Young (Dept. of Medical IT Marketing, Eulji University) ;
  • Kim, Kyung-Tae (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Youn, Hee-Yong (College of Information and Communication Engineering, Sungkyunkwan University)
  • 박나영 (을지대학교 의료IT마케팅학과) ;
  • 김경태 (성균관대학교 정보통신대학) ;
  • 윤희용 (성균관대학교 정보통신대학)
  • Published : 2014.01.17

Abstract

최근 모바일 기기 및 무선기기의 발달로 인하여 센서 네트워크가 다양한 분야에서 응용되고 있다. 따라서 센서에서 실시간으로 발생하는 스트리밍 데이터에서 이벤트를 감지하고 분석하는 것은 중요한 연구 분야로 부각되고 있다. 단순 이벤트의 발생 조건을 빠르게 판별하기 위해 비트맵 인덱스 기반 복합 이벤트 검출 기법 등 여러 가지 방법들이 사용되고 있지만, 아직까지 이기종 센서에서 발생하는 각기 다른 형태의 데이터를 융합하여 이벤트를 검출하는 복합 이벤트 처리에 대한 연구는 미비한 실정이다. 본 논문에서는 각기 다른 형태를 가지는 스트리밍 데이터에 멤버쉽 함수를 적용하여 퍼지화 함으로서 이기종 센서에서 발생하는 데이터를 융합 처리가능하며, Quine-Mccluskey 감축기법을 통하여 규칙의 신뢰도 및 속도가 향상된 의사결정을 하는 고속 이벤트 탐지기법을 제안한다.

Keywords