보정된 필터 값을 이용한 1 비트 변환 개선 알고리듬
 *김형도 **박미소 ***정제창
 한양대학교 전자컴퓨터통신공학과
 *khd1207@gmail.com, **misosmile1128@gmail.com, ***jjeong@hanyang.ac.kr

Enhanced One-Bit Transform using Filtered Value Modification

*Hyungdo Kim **Miso Park **Jechang jeong
Dept. Electronics and Computer Eng. Hanyang University

요약

본 논문은 최근 연구가 지속적으로 진행되고 있는 움직임 추정 기술 중 하나인 1비트 변환 (One-bit Transform, $1 \mathrm{BT})$ 알고리듬의 정확도를 개선시킨 알고리듬을 제안하였다. 1 비트 변환 알고리듬은 정합오차 기준을 기존의 Sum of Absolute Differences (SAD) 에서 이진연산이 가능한 정합오차로 바꿔서 하드웨어 설계에 보다 적합하도록 제안 된 알고리듬이지만 정합 과정에서 많은 오차를 야기하는 단점을 가지고 있다. 본 논문에서는 1 비트 변환 알고리듬 과정 중 계산 되는 필터 값의 보정을 통해 움직임 추정의 정확도를 향상 시켰다. 실험 결과에서 제안된 알고리듬이 객관적인 화질 측면에서 기존의 1 비트 변환 알고리듬보다 더 우수한 성능을 보이는 것을 확인할 수 있었다.

1. 서론

디지털 동영상 데이터 압축 기술은 방대한 크기를 갖는 동영상 원천 (Source)을 멀티미디어 통신 시스템에서 사 용하기 위해 필수적으로 사용되어 진다.
움직임 예측 기술은 동영상 데이터 압축 기술 중에서 핵 심적인 기술들 중 하나로, 동영상 데이터의 시간적 중복성 을 이용하여 큰 압축 효율을 얻는 기술이다. 대표적인 움 직임 예측 기술로는 Block Matching Algorithm (BMA)이 있다. BMA는 이미지 프레임을 곂치지 않도록 블록의 형 태로 나누어 각 블록마다 가장 유사한 블록을 현재 프레 임의 주변 프레임 안에서 찾는 기술이다. 일반적으로 최적 의 블록을 찾기 위해서 현재 블록의 위치를 기준으로 어 떠한 탐색 영역안의 후보 블록들과 비교를 한다. 최적의 탐색 알고리듬으로는 전역 탐색 알고리듬(Full Search Algorithm, FSA)이 사용된다. 블록의 정합을 비교하는 방 법으로는 Sum of Absolute Differences (SAD) 알고리듬 이 기준으로 사용되어지고 있다.
SAD 알고리듬을 사용하는 전역 탐색방법은 최소 정합오 차를 갖는 위치를 가장 정확하게 찾아 낼 수 있다. 하지만 그 계산 량이 방대하여 실제로 움직임 예측 기술이 전체 비디오 부호화에 과정에서 가장 큰 비중을 차지하고 있어 동영상의 실시간 부호화에 큰 어려움을 주고 있다.

이러한 전역 탐색 알고리듬의 문제점을 해결하기 위해 빠 른 움직임 예측을 위한 여러 알고리듬들이 연구되어 왔다. 여러 고속 움직임 예측 알고리듬들 중에 하나는 이미지를 적은 비트 (bit) 의 영상으로 표현하고 탐색에 사용을 하 는 이진 블록 정합 움직임 예측이다. 이진 블록 정합 알고 리듬은 이미지를 구성하고 있는 각 화소를 적은 비트 수 를 사용하도록 변환하여 빠른 정합오차 계산을 가능하게 한 기술이다. 이러한 알고리듬으로는 1 비트 변환 ${ }^{[1]}$ (One-Bit Transform : 1BT) 알고리듬과 그리고 제한된 1 비트 변환 ${ }^{[2]}$ (Constrained One-Bit Transform : C1BT) 등이 있다. 하지만 이러한 변환 기술로 빠른 정합오차 계 산이 가능해 졌지만 변환과정에서 손실되는 정보로 인해 움직임 예측의 정확도가 떨어지게 되었다.
본 논문은 1 비트 변환 알고리듬의 정확도를 높이고자 변 환 과정에서 계산되는 필터 값을 보정하는 방법을 제안한 다.

2. 기존의 알고리듬

움직임 예측을 하기위해 현재프레임을 f^{t}, 참조프레임을 f^{t-1} 라 하고 정합 오차를 계산하는 블록의 크기를 N 이라 하자. 가장 정확한 블록 정합 오차를 계산하는 Sum of

Absolute Differences (SAD) 의 식은 다음과 같다.

$$
\begin{equation*}
S A D=\sum_{m, n=N}\left|f^{t}(i, j)-f^{t-1}(i+m, j+n)\right| \tag{1}
\end{equation*}
$$

위 식에서는 각각의 두 프레임 안에 있는 위치 (i, j) 와 $(i+m, j+n)$ 에서의 크기 $N \times N$ 인 블록의 $S A D$ 를 계산하 고 있다. 위의 식 (1)으로는 정확한 두 블록의 정합 오차 를 계산 할 수 있지만 위식을 사용한 전역 탐색 알고리듬 은 계산 복잡도가 매우 커지게 된다.
움직임 예측의 계산 복잡도를 줄이기 위한 이진 블록 정 합 움직임 예측기술 중에는 1 비트 변환 알고리듬이 있다. 1 비트 변환 알고리듬은 이미지 프레임 전체의 화소를 1 비 트로만 표현하는 이진 이미지로 변환한 후 블록의 정합 오차를 number of non-matching points (NNMP)을 통해 계산을 한다.
1 비트 변환 알고리듬은 원 이미지를 이진 이미지로 변환 하기 위해 먼저 다음의 17×17 크기의 대역 통과 필터 커 널 K 를 사용한다.

$$
K(i, j)=\left\{\begin{array}{cl}
1 / 25, & \text { if } i, j \in[0,4,8,12,16] \tag{2}\\
0, & \text { otherwise }
\end{array}\right.
$$

원 이미지를 l 라 하고 식 (2) 의 필터 K 가 적용된 이미지 를 I_{F} 라 할 때, 다음과 식 (3)과 같이 이진 이미지를 생성 한다.

$$
B(i, j)= \begin{cases}1, & I(i, j) \geq I_{F}(i, j) \tag{3}\\ 0, & \text { otherwise }\end{cases}
$$

이러한 과정을 통해 한 프레임을 이진 표현으로 변환 하 는 것을 1 비트 변환이라 한다. 이렇게 1 비트 변환된 프레 임을 가지고 블록 간의 정합오차를 다음의 $N N M P$ (Nmberof Non-Matching Points)를 이용해 계산할 수 있 다.

$$
\begin{align*}
& \operatorname{NNMP}(m, n)=\sum_{i=0}^{N-1} \sum_{j=0}^{1-1} B^{t}(i, j) \oplus B^{t-1}(i+m, j+n) \tag{4}\\
& -s<m, n<s-1
\end{align*}
$$

위의 식 (4)에서 \oplus 는 Boolean Exclusive- $O R$ 연산을 의 미한다. 최종 움직임 벡터는 최소의 $N N M F$ 를 갖는 후보 블록의 위치가 된다. $S A D$ 는 정합오차를 화소단위의 계산 을 하는데 비해 $N N M P$ 는 비트단위 연산을 통해 계산하기 때문에 하드웨어에 구현이 용이하다.

3. 제안하는 알고리듬

1비트 변환 알고리듬은 빠른 움직임 예측 연산을 가능하 게 하지만, 프레임을 이진 이미지로 변환하는 과정에서 손 실되는 정보로 인해 움직임 예측 결과의 정확도가 떨어지 게 된다. 본 논문에서는 1 비트 변환 알고리듬 과정 중 계 산 되는 필터 값의 보정을 통해 움직임 추정의 정확도를 향상 시키고자 한다.

그림 1. 1비트 변환 결과: (a) Foreman 영상의 부분 이미지.
(b) 기존의 1 비트 변환 알고리듬을 통해 변환한 이미지.
(c) 제안된 1 비트 변환 알고리듬을 통해 변환한 이미지.

위의 그림 1. 의 (a)는 Foreman 영상의 일부분을 확대한 사진이다. 그림1. (b)는 기존의 1 비트 변환 알고리듬을 통 해 그림1. (a)이미지를 1비트 변환한 이미지 이다. 위의 그 림 (a)와 (b)를 비교해 보면 그림 (b)에서 흰 블록으로 표 시된 두 부분이 실제로는 큰 밝기값의 차이를 갖고 있지 만 이진으로 변환된 영상에서는 비슷한 영역처럼 표시가 되는 것을 볼 수 있다.
이러한 점 때문에 실제로는 큰 값의 차이를 갖는 두 영역 이지만 $N N M F$ 정합 오차 알고리듬에 의해 최적의 블록 정합 위치로 판단이 되는 경우가 발생한다.
이진 영상에서도 원 영상에서의 밝은 부분과 어두운 부분 을 명확히 구분 짓기 위해 식 (3)에서 필터 K 가 적용된 이미지 $I_{F}(i, j)$ 의 값을 다음 식을 통해 보정을 하였다.

$$
\begin{equation*}
\tilde{I}_{F}(i, j)=I_{F}(i, j)-0.1 \times\left(I_{F}(i, j)-128\right) \tag{5}
\end{equation*}
$$

필터 K 가 적용된 이미지 I_{F} 를 보정시킨 이미지 \tilde{I}_{F} 를 식 (3)에 적용시켜 그림 1.(a)를 변환 시킨 결과는 그림 1.(c) 와 같다. 그림을 통해 확인 할 수 있듯이 식 (5)를 통한 필터된 값의 보정으로 이미지의 밝은 부분과 어두운 부분 이 이진 이미지에서도 명확하게 구분되는 것을 볼 수 있 다. 결과적으로 필터를 거친 값의 보정을 통하여 $N N M P$ 계산을 통한 최적의 블록 정합을 찾는 과정에서 원 이미

지에서는 밝기 값의 차이가 큰 블록들이 최적의 정합 블 록으로 선택되는 경우를 줄일 수 있었다.

4. 실험 결과

기존의 1 비트 변환 알고리듬과 본 논문에서 제안된 알고 리듬을 비교해 보기위해 6 개의 $\operatorname{CIF}(352 \times 288)$ 크기의 영 상 Akiyo, Bus, Coastguard, Container, Football, Foreman 그리고 Table을 이용하여 실험을 해 보았다. 실험에서는 영상의 휘도성분만을 고려하였으며 Visual Studio 2012를 사용하였다. 실험 조건으로 탐색범위는 움 직임 예측 부호화를 수행할 블록을 기준으로 ± 16 크기의 영역을 설정하였고, 탐색 순서로는 나선형 (spiral) 기법을 사용하였다. 블록 정합 오차를 계산하는 블록의 크기는 16×16 을 사용하였다. 제안하는 알고리듬과 기존의 알고 리듬의 성능 비교를 위해 화질 비교방법으로 복원영상의 Peak Signal-to-Noise Ratio (PSNR)수치를 사용하였다.

표 1. PSNR 성능 비교 (dB)

Sequence	FSA	1BT	Proposed
Akiyo	42.36	41.69	41.40
Bus	25.62	24.32	24.51
Coastguard	30.45	29.90	29.92
Container	38.19	37.31	37.57
Football	24.11	22.90	23.01
Foreman	31.83	29.67	30.20
Table	31.47	29.88	29.96
Average	32.00	30.81	30.94

표 1. 은 기존의 1 BT 알고리듬과 본 논문에서 제안된 알 고리듬의 $\operatorname{PSNR}[\mathrm{dB}]$ 수치 결과이다. 표 1 에서 볼 수 있듯 이 본 논문에서 제안하는 알고리듬은 기존의 1 비트 변환 알고리듬의 결과와 비교해 봤을 때 Akiyo 영상을 제외한 모든 영상에서 증가된 $\operatorname{PSNR}[\mathrm{dB}]$ 결과를 가져오고 평균적 으로는 0.13 dB 높아진 $\mathrm{PSNR}[\mathrm{dB}]$ 수치를 가져오는 것을 볼 수 있다.

4. 결론

1 비트 변환 알고리듬은 동영상의 프레임을 한 화소당 1 비트로 표현되는 이진 이미지로 변환시켜 빠른 움직임 예측 계산을 가 능하게 하고 하드웨어 구현에 용이한 알고리듬이다. 하지만 프레 임을 이진 이미지로 변환하는 과정에서 손실되는 정보로 인해 움직임 예측의 정확도가 떨어지는 단점을 가지고 있다. 본 논문 에서는 기존의 1 비트 알고리듬의 움직임 예측의 정확도를 개선 시키고자 변환과정에서 계산되는 필터값을 보정하여 이진 이미 지를 생성하는 방법을 제안하였다. 실험의 결과를 통해 본 논문 에서 제안된 알고리듬은 기존의 알고리듬 보다 평균 0.13 dB 향 상된 PSNR[dB] 수치를 가져오는 것을 확인 할 수 있었다.

참고문헌

[1] Natarajan, V. Bhaskaran, and K. Konstrantinides, "Low-complexity block-based motion estimation via one-bit transforms,"IEEE Trans. Circuits Syst. Video Technol., vol. 7, no.4, pp. 702-206, Aug. 1997.
[2] O. Urhan and S. Ertürk, "Constrained one-bit transform for low-complexity block motion estimation,"IEEE Trans. Circuits Syst. Video Technol., Vol. 17, no. 4, pp. 478-482, Apr. 2007.

