뇌파 측정을 통한 자동차 가속 음질 평가

Sound Quality Evaluation for Acceleration Sound of a Passenger Car by Measuring Electroencephalography (EEG)

이승민*'이상권†'

Seung-Min Lee and Sang-Kwon Lee

1. 서론

차량이 출발하기 시작하고 가속을 할 때, 차량 에서는 가속소음이 발생하게 되고, 가속소음은 인간의 인식에 영향을 끼치게 된다. 이러한 가속 소음에 대한 음질 평가는 중요한 일이며 지난 십 년간 이 주제에 대해 연구가 이루어지고 있다. 이러한 연구는 오직 심리음향을 바탕으로 연구되 어 왔다. 이런 연구들은 승용차의 내부소음 음질 개선에 기여를 했지만 평가방법이 인체의 생리적 반응과 직접 관련된 것은 아니다. 따라서 기존의 심리음향을 기반으로 한 음질요소뿐만 아니라 생 리적 반응이 인간의 인식에 어떠한 영향을 미치 는지에 대한 연구가 필요하다. 따라서 본 논문에 서는 먼저 심리음향 음질요소가 인간의 인식에 어떠한 영향을 미치는지 간단하게 소개하고 가속 소음에 대한 뇌의 반응을 분석하기 위하여 뇌파 (EEG) 신호를 측정하였다. 측정된 뇌파는 생리음 향 음질요소로서 인간의 인식에 어떤 영향을 미 치는지 알아보았다. 마지막으로 심리음향 음질요 소와 생리음향 음질요소를 비교하여 생리음향 음 질요소가 음질을 평가할 수 있는 새로운 요소가 될 수 있는지 확인해보았다. 이러한 점은 앞으로 심리음향을 기반으로 한 음질요소와 생리적 조건 의 상관관계에 대한 설명으로 사용될 수 있다.

2. 주관적 평가

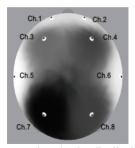
녹음된 소리의 주관적 평가를 위해서 고급차 클럽 회원 33 명이 참가하였다. 청력검사 후, 현

† Corresponding Author; Member, Department of Mechanical Engineering, Inha University E-mail: sangkwon@inha.ac.kr Tel: (032) 860-7305, Fax: (032) 868-1716

* Department of Mechanical Engineering, Inha University

평가하였다. 평가한 데이터를 사용하기에 앞서, 평가한 점수의 정확성을 높이기 위해 상자수염도 (box-whisker plot)를 사용하여 필터링했다.

대자동차 연구소에서 7 대의 차의 녹음된 소리를


3. 뇌파 (EEG)

3.1 파워스펙트럼 분석

뇌파를 관찰할 때 주파수에 따라 분류하는 파워 스펙트럼 분석을 이용한다. 파워 스펙트럼 분석은 뇌파가 특정 주파수로 진동하는 단순 진동들의 선형적 결합이라 가정하고, 이 신호에서 각각의 주파수 성분을 분해하여 그 크기를 표시한 것이다. 일반적으로 뇌파는 진동하는 주파수의 범위에 따라 델타- δ 파(4~8Hz), 알파- α 파(8~13Hz), 베타- β 파 (13~30Hz), 감마- γ 파(30~50Hz)로 구분한다.

3.2 뇌파와 주관적 평가의 상관도

알파파워 분석을 위해 전체 피실험자 33 명의 알파파워 평균을 구해보았다. 알파파워 평균과 주관적 평가와의 상관도를 Table 1 에 나타내었다. 주관적 평가와 알파파워간의 상관도는 약 78.36% 로 높은 상관도가 아니라는 것을 알 수 있다. 상 관도가 낮게 나온 이유는 다음과 같다. 알파파워 의 강도는 뇌의 위치에 따라 다르게 측정된다. Ch.1 부터 Ch.8 까지 가속소음을 듣고 파워가 높게 측정되는 채널이 있는 반면 낮게 측정되는 채널 이 존재한다. Fig.1 은 참가자 전체의 알파파워 평 균의 Brain Mapping 으로 각 채널에서 알파파워가 얼마만큼 나왔는지 보여준다. 검정색일수록 파워 가 높고 흰색일수록 파워가 낮다. Fig.1 에서 보듯 Ch.7 에서 파워가 가장 높고 Ch.5 혹은 Ch.6 에서 파워가 가장 낮은 것을 알 수 있다. 이 결과를 바탕으로 Ch.7 과 Ch.5 의 알파파워를 비교하여 Table 1 에 정리하였다.

Figure 1 Brain mapping (scalp distribution) for EEG signal measured from brain of subjects

Table1 Average value of ch.5 and ch.7 alpha wave and correlation between alpha wave and mean subjective rating

Vehicle	Ch.5	Ch.7	Subject
	Alpha Power	Alpha power	Rating
A	41.996	112.420	7.856
В	55.754	105.916	8.053
С	103.158	104.870	7.593
D	36.784	96.398	7.459
Е	40.202	79.867	7.290
F	33.761	60.781	5.997
G	33.459	79.471	6.767
Correlation	0.412	0.940	

Table1 의 결과를 보면, 파워가 높은 Ch.7 의 상관도가 파워가 낮은 Ch.5 의 상관도보다 월등히 높은 것을 알 수 있다. 즉, 알파파워가 높게 측정된 채널은 가속소음이 영향을 주지만 알파파워가 낮게 측정된 채널은 가속소음이 많은 영향을 주진 않는다고 할 수 있다. 따라서 본 연구에서는 절대알파파워가 높게 측정된 Ch.7 을 중점적으로 분석하였다.

3.3 뇌파와 주관적 평가, 심리음향의 상관도

심리음향 음질요소 중 하나인 라우드니스와 Ch.7 의 알파파워는 인간의 감성을 잘 표현하는 요소라고 볼 수 있다. 라우드니스와 알파파워 중 어떤 요소가 인간의 감성을 더 잘 나타내는 요소 인지 비교하기 위해 Fig.2 에 그래프로 나타내었다. Fig.2 에서 원은 주관적 평가에 대한 라우드니스, 사각형은 주관적 평가에 대한 Ch.7 알파파워 값을 나타낸다. 각각의 상관도가 Fig.2 오른쪽 상

단에 표시되어있다. 두 요소를 비교해보면 라우 드니스보다 알파파워의 상관도가 더 높게 나왔으며 이는 EEG 가 가속소음에 대한 인간의 감성을 더 잘 표현하는 요소라고 볼 수 있다.

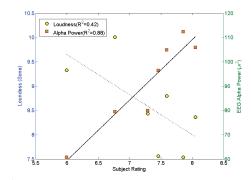


Figure 2 Correlations between the mean subjective ratings and loudness (left) and alpha power (right)

4. 결 론

본 논문은 자동차의 가속 소음에 대한 뇌파와 주관적 평가의 상관도를 제시한다. 가속 소음에 한국, 일본, 유럽회사의 고급차량 7 대가 사용되 었다. 주관적 평가 결과의 신뢰성을 높이기 위해 box-whisker plot 을 이용하여 데이터를 필터링하였 다. 측정한 뇌파의 파워 스펙트럼 분석 결과를 보면, 알파 파워가 가장 많은 영향을 미치는 것 을 알 수 있었고, 이를 바탕으로 알파 파워와 주 관적 평가의 상관도를 분석하였다. Brain mapping 결과를 통해 가속소음이 후두부(Ch.7, Ch.8) 쪽의 알파 파워에 많은 영향을 끼치는 것을 확인하였 고 Ch.7 을 중점적으로 분석한 결과 이 부분에서 높은 상관도를 갖는다는 것을 확인하였다. 심리 음향 음질요소와 뇌파 그리고 주관적 평가의 상 관도를 동시에 비교해보았다. 비교 결과 뇌파와 주관적 평가의 상관도가 더 좋게 나왔으며 이는 뇌파가 인간의 감성을 표현할 수 있는 지표가 될 수 있음을 의미한다. 본 연구를 바탕으로 가속소 음뿐만 아니라 모든 음질분야에서 뇌파에 대한 연구가 가능하다는 것을 알 수 있다.

후 기

이 논문은 2010년도 정부(교육과학기술부)의 재원으로 한국 연구재단의 지원을 받아 수행된 연구입니다.(No.2010-0014260)