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1. Introduction

Dispersion curves of the propagating modes in 

a circular pipes surrounded by liquid were 

calculated, which includes nonaxisymmetric 

modes as well as axisymmetric mode. Exact 

analytic solutions were obtained by using the 

theory of elasticity that can be applied to any

tube thickness or frequency. Thus, pressure 

radiated from the structure toward surrounding 

liquid was calculated. Results of the current 

study can be applied to the estimation of the 

radiated noise from underwater structures such 

as pile driving or similar shapes.

2. Theory

2.1 Displacement vectors and stress

According to Gauge invariance, displacement 

vector, u , can be described in terms of scalar 

potential, , and vector potential, , as:

,u               (1)

where each potential satisfies wave equation of:
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where cc and sc are longitudinal and shear sound 

speeds in the material respectively. Suppose the 

coordinate system under investigation as shown 

:

   E-mail : kbaik@kriss.re.kr

Tel : 042-868-8205, Fax : 042-868-5252

*  

** 

in Fig. 1. Assuming dependence of 

tzki zexp , where zk is axial wavenumber,

solutions to Eq. (2) are obtained by the product 

of trigonometric functions, ncos or nsin ,

where n is non-negative integer, and the Bessel 

functions with the order of n and the arguments 

of rqc and rqs where 222
zcc kkq ,

222
zss kkq , and 222 yxr . Once 

displacement vectors along r , , and z are 

obtained, stress elements in the cylindrical 

coordinates are obtained from following 

equations:
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where and are Lam constants.

In the coordinates system as shown in Fig. 1, 

displacement vectors and stress elements in the 

elastic solid are described by the infinite series 

of the linear combination of )( rqJ cn , )( rqJ sn ,

)( rqY cn , and )( rqY sn where n is counted from 

zero to infinity.

Fig. 1. Geometry of a circular tube surrounded 

by liquid.
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Since surrounding liquid is assumed as inviscid, 

in the liquid, 0 and only longitudinal 

component of wave motion is allowed, which 

describes the displacement vectors and stress 

elements in the surrounding liquid by the linear 

combination of )()( rqH wn
1  where 222

zww kkq , 

ww ck / , and wc  is intrinsic sound speed in 

the liquid. 

 

2.2 Boundary Conditions 

Boundary conditions imposed between liquid-

elastic solid interfaces are: i) continuity of 

normal displacement (gives 1 eq.), ii) continuity 

of normal stress (gives 1 eq.), and iii) vanish of 

shear stresses (gives 2 eqs.). Since inside of the 

tube is considered as vacuum (or air), boundary 

conditions imposed on the inner surface of the 

tube are: i) vanish of normal stress (gives 1 eq.), 

ii) vanish of shear stresses (gives 2 eq.). From 

the boundary conditions, seven equations 

associated with unknown coefficients are 

obtained and, thus, the eigenmodes propagating 

along the z-axis are calculated by from the 

condition of the non-trivial solutions to the 

associated unknown coefficients. 

 

3. Results 

 Figure 2 shows the dispersion curves of the 

several eigenmodes calculated for a stainless 

steel 304 tube with 8 mm of thickness and 1.35 

m of outer diameter. Outside of the tube 

surrounding the tube is water. Material 

properties used in the calculation are displayed 

in Table 1. Horizontal axis is the wavenumber-

inner radius product defined in water, and the 

vertical axis is phase speed of the mode 

normalized by the sound speed in water. Each 

mode is identified by modal indices n and m.  

 

Table 1 Material properties used in the calculation. 
Material (kg/m3) cc  (m/s) sc (m/s) 

ss304 7900 5,675 3,141 

water 998 1,486  

 
Fig. 2. Dispersion curves for several modes. 

 

 
Fig. 3. Mode shapes of the eigenmodes. 

 

Those indices are related to the angular and 

radial motions of the tube respectively. For each 

value of n, mode shape of the tube is plotted in 

Fig. 3. Each mode has eigenmodes that exist to 

the zero-frequency limit while the others diverge 

at their cut-off frequencies. Once eigemmodes 

are obtained within the frequency range 

interested, pressure radiating from this structure 

toward surrounding liquid can be calculated by 

the infinite series of the Hankel function. 

 

4. Conclusion 

Dispersion curves of the eigenmodes in a 

circular tube surrounded by the liquid are 

calculated by using the exact theory of elasticity 

and the elastic boundary conditions. Using the 

dispersion relation of the mode, radiating 

pressure from the structure toward the 

surrounding liquid can be calculated. 
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