전동휠체어용 리튬폴리머 배터리팩 개발 및 성능시험

Development of Lithium Polymer Battery Pack for Powered Wheelchair *#홍응표¹, 김도훈², 최기원¹, 류제청¹, 문무성¹

Key words: powered wheelchair, Lithium Polymer battery, highly efficient

1. 서론

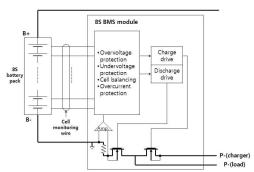
기존의 전동휠체어에 주로 사용하는 납축전지는 무겁고 수명이 짧으며 겨울에 특성이 급속히 떨어지고 중금속에 의한 환경오염 등의 다양한문제점을 가지고 있다. 최근의 첨단 전동휠체어는은 경량화와 효율개선을 위해 리튬배터리를 사용하고 있다[1]. 친환경 전기차에 대한 세계적인 관심과 연구개발 투자로 리튬배터리의 가격이 지속적으로 내려가고 있으므로 리튬배터리를 채택하는 전동휠체어도 지속적으로 증가하고 있다. 본 연구에서는 전동휠체어에 적용할 수 있는 리튬폴리머BMS (battery management system)를 개발하고 배터리를 패킹하여 성능시험을 행하였다. 시험으로부터 개발한 배터리 팩은 전동휠체어에 충분히 적용가능함을 확인하였다.

Table 1 Specification of designed BMS

	1 . 1 . 1
Electrical characteristics	designed value
over charge detection voltage (V)	4.25 ± 0.025
over charge release voltage (V)	4.15 ± 0.05
over discharge detection voltage (V)	2.7 ± 0.08
over discharge release voltage (V)	3.0 ± 0.1
over current detection	$85A \pm 10A 1sec$
	$300 \pm 30 \text{A 5msec}$
cell balancing current (mA)	26 ± 3
cell balancing voltage (V)	4.18 ± 0.03
temperature protection ($^{\circ}$ C)	105 ± 10
no load current consumption(μA)	Max 150 @ 29.6V
charging voltage (V)	$33.44 \sim 33.6$
charging method	C.C. C.V.

2. 배터리 팩 설계 및 제작

리튬폴리머 전지는 부피, 무게, 출력 및 수명특성 이 매우 우수하나 과충전이나 과방전시에 특성이 현저하게 떨어지거나 발열 또는 발화 등의 위험성 이 높아지므로 반드시 보호회로 (protection circuit) 혹은 BMS를 적용해야 한다. 표 1은 설계한 전동휠체어용 BMS의 성능이며 그림 1은 표 1의 성능을 구현하기 위한 BMS모듈을 나타낸다. 사용한 리튬폴리머 배터리셀은 (주)코캄의 SLPB7510620516Ah 셀이며[2, 3], 배터리 팩은 셀 8개를 직렬로 연결하여 8SIP (8 serial & 1 parallel) 29.6V로 구성하였다. 그림 2는 제작한 리튬폴리머 배터리 팩을 나타내며 배터리 팩과 BMS 충전단자로 구성된다.



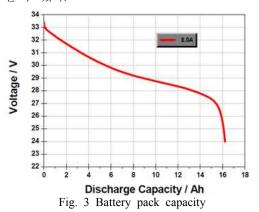

Fig. 1 Block diagram of BMS module

Fig. 2 Pilot battery pack using Lithium-polymer cell (Kokam, SLPB75106205) & designed BMS

3. 시험 및 결과

제작한 리튬폴리머 배터리 팩의 용량을 확인하기 위해 8.0A 정전류/정전압 (CC/CV)으로 33.6V까지 완전 충전하고 10분 동안 방치한 후에 8.0A 정전류로 방전종지전압 24.0V 까지의 방전지속시간을 측정하여 방전용량으로 표기하였다. 방전용량은 3회 반복 실행후 각각의 용량이 2% 범위 내에속하는 것으로 결과를 취합하며 3회 평균값을 용량으로 정하였고 그림 3과 같다. 그림 3으로부터 8A로방전시 제작된 배터리 팩의 용량은 16Ah 이상임을알 수 있다.

제작한 리튬배터리 팩의 방전특성을 확인하기위해 8.0A 정전류/정전압으로 33.6V까지 완전 충전후 10분간 방치하였다가 해당되는 전류값으로 정전류 방전하여 전압이 24V가 될 때까지 방전지속시간을 측정하였으며 시험결과는 그림 4와 같다. 그림 4로부터 제작한 배터리 팩은 48A로 방전시15Ah 이상, 80A로 방전시14Ah 이상의의 우수한성능을 나타냄을 알 수 있다.

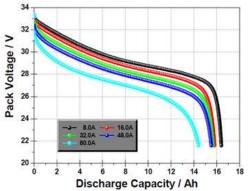


Fig. 4 Discharging characteristics of our battery pack

온도특성을 확인하기위해 23±2℃에서 8.0A 정전류/정전압으로 33.6V 까지 완전 충전한 후 각온도조건에서 2시간 방치한 후 설정된 전류값으로 정전류 방전하여 전압이 24V가 될 때까지의 방전지속시간을 측정하여 방전용량으로 나타내면 그림 5와 같다. 그림 5로부터 제작한 배터리 팩은-20℃에서도 방전성능이 약 35% 만 감소하는 우수한 특성을 보임을 알 수 있다.

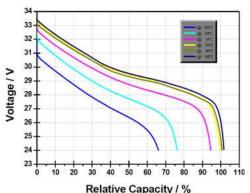


Fig. 5 Temperature characteristics of tested battery pack

4. 결론

전동휠체어의 경량화와 고효율화를 위해 크고 무거운 연축전지를 대체할 수 있는 전동휠체어용 리튬폴리머 배터리 팩을 설계하고 제작하였다. 29.6V 16Ah용량으로 설계 및 제작한 배터리 팩의 특성을 시험하였고, 전동휠체어에 충분히 적용할 수 있는 우수한 방전 특성을 가짐을 확인하였다.

후기

본 연구는 2012년도 지식경제부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한연구과제입니다. (NO.2012T100100658)

참고문헌

- 1. http://www.yamaha-motor.jp/wheelchair/
- 2. http://www.kokam.com/new/kokam/index.html
- 3. 홍응표, 류제청, 문무성, "초경량 전동휠체어 시험 및 평가," 한국정밀공학회 2012년도 춘계학술대회논문집지, Vol.2012 NO.5, 1177-1178, 2012.