실험계획법을 이용한 향상된 전자기력 특성을 갖는 최적 형상 설계치 도출에 관한 연구

A study for deriving optimal shape design with improved Electromagnetic force by using D.O.E

*김석준 1, #양해정 2, 이승재 2

*S. J. Kim¹, [#]H. J. Yang(yhj@kpu.ac.kr)², S. J. Lee² ¹(주)유압사랑. ²한국산업기술대학교 기계설계공학과

Key words: EPPR Valve, Electromagnetic Force, Taguchi method, D.O.E

1. 서론

전자비례제어감압밸브는 입력전류에 비례하여 압력을 제어하는 밸브로 중장비의 Main Control Valve 에 사용되는 Spool 을 전자적으로 제어할 수 있는 핵심부품이다. 최근 MCV 를 제어하는 기존의 Lever Type 및 유압식 Pilot Valve 에 의한 방식들이 점차전자비례제어방식으로 바뀌고 있다.[1] 따라서 EPPR Valve 를 전자기력 해석 상용프로그램을 이용하여특성해석을 하고, 보다 향상된 성능을 가지는 EPPR Valve 의 형상설계치를 제시하기 위해 실험계획법의스크리닝 설계법과 다구찌 기법을 이용하여최적형상설계치를 제시하고자 한다.

2. 스크리닝기법을 이용한 설계인자 도출

EPPR Valve 의 전자기력 균일도와 평균값의 크기에 영향을 미치는 주요 인자를 Fig.1 과 같이나타내었다. 전자기력 특성에 영향을 미치는 주요 인자를 경제적으로 찾아내기 위해 스크리닝설계법을 이용하였고 스크리닝설계법에 사용되는실험계획법에서 다수의 설계요인 중 소수의 주요요인을 선별하는 부분배치법 선택하여 Table.1 과같이 7 개의 인자와 2 수준으로 설정 하였다.전자기력 특성 해석은 직교배열표상 설계인자수준에 따라 총 32 번 수행하였다.

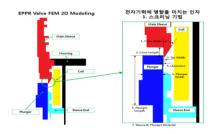


Fig. 1 Key Factor Shape for Screening Method

Table. 1 Key Factor Data for Screening Method

	1 차 선정된 설계인자 및 수준								
설계인자	설계인자명	단위	수준 1	수준 2					
Α	Cone Angle	[°]	26	36					
В	Cone Length	[mm]	3.2	4.2					
С	Tip Width	[mm]	0.2	0.4					
D	Clearance	[mm]	0.1	0.2					
E	Plunger Width	[mm]	5.0	4.0					
F	Plunger Length	[mm]	16.0	18.0					
G	Material	None	SM10C	Pure iron					



Fig. 2 Uniformity and Mean Value for Main Effect

Fig.2 와 같이 EPPR Valve 의 주요설계 인자를 분석 하였고, Table.2 과 같이 앞 단계의 스크리닝설계법의 부분배치법을 통하여 전자기력 균일도와 평균값에 영향을 미치는 설계인자에 대한 기여율을 비교하였다. EPPR Valve 의 전자기력 균일도와 평균값에 영향을 미치는 주요 설계인자를 A, B, D, E 즉 Cone Angle, Cone Length, Clearance, Plunger Width 로확인 할 수 있다. 여기서 Clearance 의 경우 Plunger 와 Sleeve 사이의 Gap 이며 이 값이 커지게되면 Plunger 의 작동에 영향을 미치게 된다. 따라서 Clearance 를 제외한 Cone Angle, Cone Length, Plunger Width 를 최종 주요 설계인자로 선정하였다.

Table. 2 Key Factor Selection of EPPR Valve

	설계인자	균일도	평균값
Α	Cone Angle	31.101%	1.286%
В	Cone Length	0.213%	66.605%
С	Tip Width	4.135%	2.619%
D	Clearance	13.806%	0.994%
E	Plunger Width	30.138%	21.309%
F	Plunger Length	0.054%	0.032%
G	Material	1.071%	4.039%

3. 다구찌기법을 이용한 최적형상설계

다구찌 기법은 일본의 다구찌 박사에 의해 창안된 품질 개선 기법으로 다구찌 기법의 목적은 제어할 수 있는 영향력이 강한 인자를 찾아내어 이 인자들의 영향력을 최대로 하고 잡음의 영향력을 최소로 하여 강건설계를 하는 것이다.[2]

EPPR Valve 의 전자기력 균일도와 평균값에 대한 설계인자로는 스크리닝 설계법을 통하여 얻어낸 결과인 Cone Angle, Cone Length, Plunger Width 로 선정하였고, 설계인자의 해석상 수준을 증가시켜 실질적인 최적화 값에 근사하도록 Table.3 과 같이 설계인자의 수준을 5 수준으로 선정하였다.

Table, 3

ſ	최적화 인자		Level of design factor						
			1	2	3	4	5		
Ī	Cone Angle	Α	22.0°	24.0°	26.0°	28.0°	30.0°		
Ī	Cone Length B		3.2mm	3.5mm	3.7mm	4.0mm	4.2mm		
Ī	Plunger Width C		5.0mm	4.9mm	4.8mm	4.7mm	4.6mm		

EPPR Valve 는 Controller 에 의해 전달되는 전류값에 의해 작동되므로 잡음의 원인을 Table.8 과 같이 입력 전류값의 변동으로 선정하였고 설계인자는 3 인자 5 수준으로 선정한 후 각 인자의 2 인자 교호작용 및 고차 교호작용이 없다는 가정하에 최소한의 실험으로 각 인자를 배치할 수 있는 3 수준계 직교 배열표 L25(5³)를 이용하였다.

Table. 4 Noise Factor Selection of Taguchi Method

	잡음인자							
전류값	N1	N2						
CTE	5%의 전류값 감소	5%의 전류값 증가						
800mA	760mA	840mA						

스크리닝 설계법의 요인배치법으로 전자기력 균일도 및 평균값에 영향을 미치는 인자를 선정 후 다구찌 기법을 통하여 전자기력 균일도 및 평균값에 대한 최적의 설계인자를 도출 하였다.

Table. 5 Optimum Shape Design Factor

No	Cone Angle	Cone Length	Plunger Width	균일도[%]	평균값[N]
1	24	3.2mm	r langer main	19.90	30.448
-				11.65	28.73
	24	3.5mm	4.6mm		
3	26	3.2mm	4.011111	9.98	30.959
4	26	3.5mm		2.25	29.034

기존 EPPR Valve 와 최적 EPPR Valve 의 입력 전류값에 대한 전자기력 균일도와 평균값의 전자기력 특성 해석 그래프는 다음 Table.6 과 Fig.3 에서 확인 할 수 있다. 기존 EPPR Valve 는 MCV 의 제어범위인 입력 전류값 800~400mA 에서 균일도는 최대 약 15%에서 최소 약 9%의 값을 가진다. 최적 EPPR Valve 는 최대 약 9%에서 최소약 2%의 값을 가진다. 전자기력 평균값의 경우최대 입력 전류값 800mA 에서 기존 EPPR Valve 는 31.244[N]로 MCV 에 전달하는 제어압은 28.550[bar]이고 최적 EPPR Valve 는 29.034[N]이며 제어압은 26.382[bar]로 최적 EPPR Valve 의 경우기존 EPPR Valve 보다 전자기력은 약 2.2[N], 제어압 또한 약 2.2[bar] 감소하였지만 Fig. 3 에서 확인 할수 있듯이 EPPR Valve 의 전체 Storke 에서 전자기력특성이 크게 안정되어 있음을 확인 할수 있다.

Table. 6 Analysis Result Comparison Data

Tubici o ilitary sis itestate comparison Duta										
기존 EPPR Valve 전자기력 특성 해석 결과										
구 분	800mA	700mA	600mA	500mA	400mA	300mA	200mA	100mA		
균일도[%]	12.28	15.45	15.02	12.93	9.24	13.3	25.02	34.31		
평균값[N]	31.244	26.763	22.215	17.683	13.209	8.881	4.816	1.347		
제어압[bar]	28.550	24.155	19.692	15.247	10.858	6.612	2.624	-0.779		

최적 EPPR Valve 전자기력 특성 해석 결과										
최적 EPPR Valve 전자기역 특성 매적 필파 구 분										
구 문	800mA	/00mA	600mA	500mA	400mA	300mA	200mA	100mA		
균일도[%]	2.25	3.92	5.95	6.12	9.71	16.39	25.87	32.45		
평균값[N]	29.034	24.952	20.763	16.532	12.334	8.255	4.433	1.239		
제어압[bar]	26.382	22.377	18.269	14.118	9.999	5.998	2.249	-0.885		

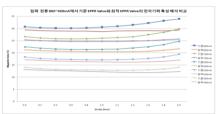


Fig. 3 Analysis Result Comparison Graph

4. 결론

실험계획법의 스크리닝 설계법과 다구찌기법을 통하여 EPPR Valve 의 최적형상설계치를 도출 하였으며 그 결과 값은 Cone Angle 26°, Cone Angle 3.5mm, Plunger Width 4.6mm이다. EPPR Valve 의 향상된 성능을 가지는 최적형상설계치를 실험계획법을 통하여 제시하였으며 추후 EPPR Valve 의 유동, 유압 특성실험을 실시하기 전 중요한 전자기력 특성데이터로 활용 할 수 있을 것이다.

참고문헌

- 김석준, "다구찌 기법을 이용한 최적의 전자기력을 갖는 EPPR Valve 의 형상설계 및 실험에 관한 연구", 한국산업기술대학교 지식기반기술 에너지대학원, 공학석사논문, 2011
- 2. 이레테크 사업팀, "새 Minitab 실무완성", 이레테크 .2009