자동변속기 스플라인 부품의 치단조 성형 방법에 대한 연구

Study on gear forging process for the spline parts of automatic transmission

*이성민 1 , $^{\#}$ 김봉준 2 , 변원용 1 , 김현수 1 , 박은수 1

*S. M. Lee¹, *B. J. Kim(bulkkot@empal.com)², W. Y. Beon¹, H. S. Kim¹, E. S. Park¹
¹ 경창산업 TM 기술연구소, ² 재료연구소

Key words: Drum Clutch, Gear Forging, FE analysis

1. 서론

일반적인 자동변속기용 Clutch 부품은 제품 간의 조립과 동력전달을 위해 스플라인(spline) 형상을 가진다. 소재에서 스플라인 형상을 만 들기 위해서는 다단 딥 드로잉(Deep Drawing)을 이용한 preform 성형 후, 이를 다시 Cold Reduction Process 성형을 통해 스플라인을 성형 하는 방법이 일반적으로 적용된다.(Fig. 1)

이러한 다단 딥 드로잉+Cold Reduction Process 공정을 통한 성형 공정은, 일반적인 단조 치 성형에 비해, 소둔, 본데 처리 등 전처리 공정 제거가 가능한 장점을 가지고 있기는 하나, 점진성형이라는 Cold Reduction Process 공정의 특성상, 단조 치 성형에 비해 상대적으로 긴 제품 생산 사이클 타임을 가지게 된다.(1)

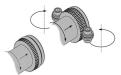


Fig. 1 Schematic of Deep Drawing + Cold Reduction Process

이에 따라 본 연구에서는, 자동변속기 Clutch 부품의 생산성 향상을 목표로, 자동변속기 Clutch 부품 제조에 새로운 공법에 대한 적용 및 실험을 진행하였다. 이 새로운 공법은, 복동 서보 프레스를 이용한 다단 딥 드로잉 공정과 단조 치성형 (spline forging) 공정이 동시에 진행되는 One-Shot Forming 이라고 명명된

공정이다.

2. 공정개요

2.1. One-Shot Forming 공정

One-Shot Forming 공법은 평판 형상의 블랭크를 투입하여 다단형상, 날개형상 성형 후 최종 성형으로 부품에 spline 성형을 하는 공법이다. 이는 기존의 공법들과 차별화되는 특성을 가지는데, 기존의 다단 딥 드로잉 공정으로 제작되던 preform 을 복동 서보 프레스를 이용한단조 공정으로 진행하고, Grooving 공정으로 진행하던 spline 치형을 단조 치 성형으로 진행된다. 다시 말해 drawing + Cold Reduction Process의 이종공법, 이종 장비로 진행되는 공정이One-Shot Forming 이라는 하나의 공법, 하나의장비로 성형이 가능하다는 것이다.

One-Shot Forming 공정에 사용되는 복동식 Press M/C 은 각각 독립적인 움직임과 성형력 컨트롤이 가능한 Punch 와 Die 들로 구성된 공정으로, 이는 기존의 형단조에 비해서 아주 높은 공정 자유도를 가지며, 기존의 서보 프레스와 비교할 시, 그 기계적 성능 및 정밀도 등이월등히 높다고 할 수 있다.

물론, 기존의 단조 공정과 같이 소둔, 본데 등의 전처리가 필요하지만, 한 장비에서 preform 이후 새로운 전처리 없이 곧바로 동일 M/C 에서 치성형이 가능한 특성이 있고, 이를 통해 생산성을 극대화 시킬 수 있다는 장점을 가진 공정이다.

2.2. 유한요소해석 및 성형실험

최적 공정 도출 및 사전 검증을 위해 성형해석 범용 Tool 인 DEFORM_3D v10.2 를 이용하여, 해석을 진행하였다. 해석 조건은 Table 1 과 같다.

Table 1 Conditions of FE analysis

2				
	Mesh	200,000		
투입소재	Material	SAPH440		
	Preform Size	15/360 (1/24)		
	Туре	Plastic		
해석	기법	라그랑지안		
	마찰타입	쿨롱마찰		
	"[절다집	는 중 다 설		

공정해석은 실제 공정과 같은 조건으로, 각 단계별로 시행하였으며 소재투입, pre_drawing, 다단 성형, spline 성형 순으로 진행하였다. 해석 결과는 Table 2 에 나타내었고, 3.5t 소재가 spline 성형을 위한 최적두께라는 결과를 얻어 성형 실험에 적용하였다.

Table 2 Results of FE analysis

소재 두께	3.0t	3.5t	3.8t	필요치수
Spline inner	2.25mm	2.41mm	2.68mm	2.38mm
				MIN
Spline outer	1.76mm	1.81mm	2.71mm	1.72mm
				MIN

해석 결과를 바탕으로 SAPH440 3.5t 소재를 적용하여 샘플에 대한 T/O 를 진행하였다. 소재는 치단조 성형을 위해 구상화 소문+본데처리를 하여 투입하였다. 구상화 소문을 거친소재의 표면경도는 평균 58~60(HRB) 수준이었으며, 소재의 crack 등의 문제점은 발생하지 않았다.

Fig. 2 Press M/C & DRUM U/D CLUTCH

2.3. DATA 비교

시제품의 측정 결과와 유한요소해석의 결과를 비교하였다. Fig. 3 과 같이 전체적인 형상은 시제품 대비 해석 결과가 거의 일치함을 알 수 있다. 제품에서 가장 중요한 역할을 하는 내•외측 치형부, 치형 길이의 세가지 항목에 대한 평균 측정 치수들을 비교하였다. Table 3은 유한요소해석 결과 대비실제품의 주요치수를 비교한 것으로 해석결과의 신뢰도를 나타내었다.

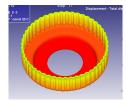


Fig. 3 One-Shot Forming Products

Table 3 Results of FE analysis and Experiment

	Spline Inner	Spline Outer	Height
FE analysis	2.41mm	1.81mm	56.7mm
Experiment	2.49mm	1.79mm	57.1mm

4. 결론

본 연구에서는 자동변속기 Clutch 부품의 One-Shot Forming 공정 적용에 대해 고찰하였다. 이 공정은 기계 변경 없이 한번에 연속 성형이가능한 공정구조와 상대적으로 짧은 성형시간을 통해 높은 생산성을 달성할 수 있다. 유한요소해석 결과와 실험에서 얻은 DATA 의비교를 통해, 해석의 유효함을 확인하였다.

참고문헌

 Bong-Joon Kim, "Study on the Numerical Simulation of Cold Reduction Process for Manufacturing the Drum Clutch," Steel Research International, Special Edition: 14th International Conference Metal Forming2012, 1303-1306