광학센서를 이용한 FSMP 용 측정시스템 개발

Development of FSMP measurement system using optical sensor *이찬희¹, 이원기¹, 최준명¹, 김호상¹, 이경돈¹, 김영수²

Key words: Giant Magellan Telescope, Fast Steering Mirror, PSD sensor

1. 서론

한국천문연구원에서는 세계 최대급인 구경 25m 차세대 Giant Magellan Telescope (GMT)을 미국, 호주 등의 국가들과 국제 공동으로 협력을 개발하고 있다. 그 일환으로 부경(Secondary mirror) 중의 하나인 Fast Steering Mirror(FSM)의 개발 및 성능평가를 위하여 시험모델(Prototype) 개발이 진행되고 있다. 본 논문에서는 제작된 FSM 시험모델이실제 망원경에서와 같이 바람에 의한 이미지 상의흔들림에 대한 보정 기능의 작동 여부를 확인하고이에 대한 성능 평가를 하기 위해서 광학 센서를이용한 FSMP용 측정시스템을 개발하였다.

2. FSMP 팁틸트 시험장치

GMT(Fig.1)에 사용될 FSM의 segment는 각각 뒷면에 살빼기를 해서 경량화를 한 반사경과 반사경을 구동하는 Tip-tilt 시스템으로 이루어져 있다. Tip-tilt 시스템은 바람과 같은 외란 등에 의한 상의흔들림을 보정하기 위하여 actuator를 반사경 뒤에 장착한 시스템 이다[1].

Fast Steering Mirror Prototype(FSMP)용 Tip-tilt 시스템은 FSM의 성능을 성공적으로 확보하고 조립 및 제작상의 절차들을 검증하고 점검하기 위한 목적으로 제작되고 있다. 상기 시스템은 3개의 액츄에이터에 의해 구동되는 형태로서 반사경의 고속, 정밀운동의 구현을 위해 위치형 구동기인 압전액츄에이터 와 관련 부속 부품들을 사용하고 있다. 특히, Tip-tilt 시스템은 부경의 축 방향 지지 뿐만아니라 시스템의 이상 작동시 부경을 보호할 수있는 Axial support로서 기능을 하게 되며 반사경의빠른 움직임을 발생시켜 망원경 상의 흔들림을보정할 수 있는 역할을 수행하게 된다. Tip-tilt 시스템의 주요 요구사항으로는 ±10 arcsec 의 틸팅 각도



Fig. 1 Giant Magellan Telescope (GMT) and the tip-tilt system

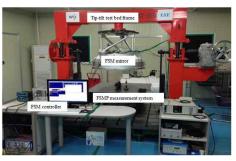


Fig. 2 Picture of manufactured tip-tilt test bed with FSMP measurement system

와 외부 흔들림의 대역폭을 고려한 고속 스티어링 능력, 그리고 매우 미세한 분해능을 들 수 있다[2]. FSMP용 Tip-Tilt system의 성능평가를 위한 시험 장치를 Fig.2와 같은 형태로 설계 제작 되었으며, FSM 미러 아래 광학 테이블 위에 FSMP용 측정시 스템을 구성하였다.

3. FSMP용 측정시스템 구성

레이저에 의해서 발생하는 광점을 FSM의 x 축 방향의 회전 움직임 θ_x 와 v 축 방향의 회전 움직임 θ_y

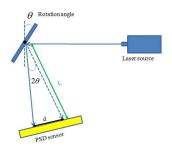


Fig. 3 Concept of FSMP measurement system

로 회전 각도가 주어지면 센서에 입사되는 레이저 광점이 y방향과 x방향으로 움직이게 만드는 형태로 측정시스템을 구성하였다. Fig. 3은 이러한 측정시스템에 대한 개념도를 나타내었다. 이 때 회전각도 의해서 움직이는 레이저 광점의 거리는 식(1)과 같이 추정 된다.

$d = L \times 2\theta \tag{1}$

Fig.4 은 실제 FSMP 시스템에 맞게 구현된 측정시스템의 개략도이다. 레이저 소스에서 나온 빛은 Beam splitter와 Folding mirror를 거쳐서 FSM에 의해서 반사된다. FSM에서 반사된 빛은 다시 Folding mirror와 Beam splitter를 거쳐서 PSD 센서에 입사된다. 이 때 FSM에서 반사된 빛이 PSD 센서로 입사되는 지점까지의 거리가 개념도에 나타낸 거리 L과 같다. Fig.5는 실제 구현한 FSMP용 측정시스템을 나타낸다.

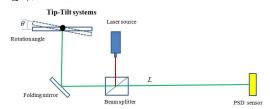


Fig. 4 Schematic of FSMP measurement system

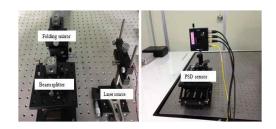


Fig. 5 Picture of FSMP measurement system

4. 측정시스템의 성능실험

구성된 FSMP용 측정시스템이 정상적으로 작동하고 FSM의 원하는 움직임을 구현 하는지를 확인하기 위해서 PSD 센서의 중심으로부터 일정한 거리로 광점을 움직이게 하는 원 형태의 움직임을 구현시켰다. Fig.6는 PSD 센서 값을 오실로스코프에 받아서 나타낸 결과이다. 이러한 실험결과를 통해서 FSM의 회전각도가 센서의 x, y 방향의 움직인 거리로 구현 되는 것을 확인하였다.

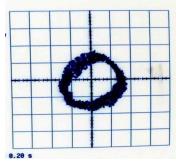


Fig. 6 Test result of the circle motion

5. 결론

본 연구에서는 FSM 시험모델의 성능 평가 및 보정 기능을 확인을 위한 FSMP용 측정시스템을 개발하였다. 실제 망원경의 이미지를 레이저의 광점으로 대신 하여 대기를 통과한 레이저 광점의흔들림을 통해서 망원경에서 구성된 이미지 상의흔들림을 구현할 수 있었다. 이와 함께 FSM 의회전 각도를 PSD 센서의 변위 량으로 변환시켜서 PSD 센서 값을 통해서 FSM의 회전 각도를 측정할수 있도록 하였다.

참고문헌

- GMT Organization, "Giant Magellan Telescope Conceptual Design Review," GMTO(2006)
- 2. 이찬희, 최준명, 김호상, 허덕재, 이경돈, 김영 수, "FSMP 용 팁틸트 시스템의 성능시험장치 개발", 한국정밀공학회 추계 학술대회, 2011, pp35-36