ST-P001

Ferroelectric and Magnetic Properties of Dy and Co Co-Doped BiFeO₃ Ceramics

¹Department of Physics, Hanyang University, Seoul 133-791, ²Institute of Basic Sciences and Department of Physics, Sungkyunkwan University, Suwon 446-740, ³Department of Nano & Electronic Physics, Kookmin University, Seoul 136-702, ⁴Department of Electronic Physics, Hankuk University of Foreign Studies, Yongin 449-791, ⁵Department of Information Display, Sunmoon University, Asan 336-708, Korea

Multiferroic materials have attracted much attention due to their fascinating fundamental physical properties and technological applications in magnetic/ferroelectric data-storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, BiFeO₃is a typical multiferroic material with a room temperature magnetoelectric coupling in view of high magnetic-and ferroelectric-ordering temperatures (Neel temperature T_N~647 K and Curie temperature T_C~1,103 K). Rare-earth ion substitution at the Bi sties is very interesting, which induces suppressed volatility of Bi ion and improved ferroelectric properties. At the same time, Fe-site substitution with magnetic ions is also attracting, and the enhanced ferromagnetism was reported. In this study, Bi_{1-x}Dy_xFe_{0.95}Co_{0.05}O₃ (x=0, 0.05 and 0.1) bulk ceramic compounds were prepared by solid-state reaction and rapid sintering. High-purity Bi₂O₃, Dy₂O₃, Fe₂O₃and Co₃O₄ powders with the stoichiometric proportions were mixed, and calcined at 500°C or 24 h to produce Bi_{1-x}Dy_xFe_{0.95}Co_{0.05}O₃. The samples were immediately put into an oven, which was heated up to 800°C nd sintered in air for 30 min. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The field-dependent magnetization measurements were performed with a vibrating-sample magnetometer. The electric polarization was measured at room temperature by using a standard ferroelectric tester (RT66B, Radiant Technologies).

Keywords: Multiferroic, BiFeO3, Magnetic properties, Ferroelectric properties