Simulation of nano MOS gate tunneling current with SiO_2/Er_2O_3 double-layer gate dielectrics

Seok Man Hong, Hyeon Jun Ha, Young Sun Moon

School of Electrical Engineering, Korea University, Seoul 136-701, South Korea. e-mail:strict1@naver.com, cometzx@korea.ac.kr, sjoyfuls@webmail.korea.ac.kr

ABSTRACT

Nano MOS with Er_2O_3/SiO_2 double-layer gate dielectrics was demonstrated by EDISON Nanophysics software. Double-layer structure decreases the gate leakage current in two orders compared with SiO₂ single-layer gate dielectric.

INTRODUCTION

The continuous reduction of the SiO₂ layer thickness for advanced metal-oxide-semiconductor field-effect transistor (MOSFET), the gate leakage current becomes unacceptably large due to the quantum-tunneling limit of 1.5-2.5 nm. To resolve this issue, high-k materials such as Al_2O_3 , ZrO_2 , HfO₂, La₂O₃, Y₂O₃, and Gd₂O₃, are widely studied for future MOSFET gate dielectric. The high-k gate dielectrics must be processed at hightemperature thermal treatment to achieve a chemical stability for standard complementary metal-oxide-semiconductor (CMOS) process. However, the thermal treatments degrade the quality of the dielectric films generating silicide and silicates at the interface. These resulted in recrystallization of the dielectric film, which eventually induces a higher leakage current and lower channel mobility [1]. Recently, some researchers have reported that Er₂O₃ thin film was deposited on Si substrate shows a promising gate dielectric material because of high dielectric constant (k = 14) and excellent electrical properties. Moreover, Er_2O_3 are also interesting that it has large conduction band offset on Si (~3.5 eV) due to its large band gaps (~5.4 eV). These properties effectively suppress the different type of leakages which are made by Schottky emission of electrons into the band states or donor-type oxygen vacancies [2].

In a nano MOS gate stack with a high-k dielectric material, the structure of a double-layer (high-k layer and SiO₂ layer) gate dielectric is

known as improving the channel carrier mobility [4]. These advantages are originated from improving instability with Si and reduction of high trap density of high-k material. Moreover, this structure relieves electrical stress between gate dielectric, leading to increase device reliability.

Nevertheless, so far there are no simulation reports on double-layer gate dielectric (Er_2O_3 layer and SiO₂ layer) for nano MOS device. Hence, to precisely design the double layer structure with Er_2O_3 high-*k* film, we optimized the double-layer gate dielectric structure with Er_2O_3 and SiO₂ layer by EDISON Nanophysics software.

RESULTS AND DISCUSSION

In this study, different gate stacks are used to simulate the electron transport in nano MOS device. The EDISON Nanophysics software for nano MOS device is capable of simulating quantum-mechanical electron tunnelling based on the non-equilibrium Green's function (NEGF) formalism [3]. We compare reference structure composed of a single-layer and double-layer gate dielectric stacks. In EDISON Nanophysics software, we are able to modify some parameters such as thickness, dielectric constants, effective mass, and conduction band offset. Firstly, the simulation of the nano MOS with single SiO₂ (2.5 nm) gate dielectric and with Er₂O₃ (8.897 nm) gate dielectric were performed. In this simulation, SiO₂ and Er_2O_3 gate dielectrics are with the same equivalent oxide thickness (EOT) of 2.5 nm. The EOT formula is

$$t_{eq} = t_{high-k} \frac{\varepsilon_{SiO_2}}{\varepsilon_{high-k}} = \frac{3.9}{\varepsilon_{high-k}},$$
 (1)

Where ε is the dielectric constant and t is the material thickness. The parameters for SiO₂ gate dielectric are relative permittivity of 10, effective mass of 0.38 and conduction band offset of 4.3 eV.

Gate dielectric	Physical parameter			
	E_G (eV)	$\varepsilon/\varepsilon_0$	m^*/m_0	ΔE_C
SiO ₂	9.0	3.9	0.22	4.3
Er_2O_3	5.4	14	0.25	3.5

TABLE 1. Physical parameters of different gate dielectrics for nano MOS simulation.

TABLE 2. Physical thicknesses and EOT of nano MOS gate stacks simulation.

Cata ataalya	Physical thic	ЕОТ	
Gate stacks	SiO ₂	Er_2O_3	EOI
SiO ₂	2.5	-	2.5
Er_2O_3	-	14	2.5
SiO ₂ /Er ₂ O ₃	1	5.384	2.5
SiO ₂ /Er ₂ O ₃	0.5	7.178	2.5

And the parameters for Er_2O_3 gate dielectric are relative permittivity of 14, effective mass of 0.25 and conduction band offset of 3.5 eV. The physical parameters we used in simulation are given in Table 1 and the physical thicknesses of nano MOS gate stacks and EOT are arranged in Table 2. Fig. 1 shows the gate leakage current densities versus gate voltage (V_G) of SiO₂ and Er₂O₃ single-layer gate dielectrics. We observed that the gate leakage current is effectively reduced in Er₂O₃ single-layer gate dielectrics. This result is because the physical thickness of Er₂O₃ gate dielectric is much higher than that of SiO_2 gate dielectric. In EOT = 2.5 nm device, the thickness of SiO_2 gate dielectric is 2.5 nm and the thickness of Er₂O₃ gate dielectric is 8.897 nm. It is proven that the physically thicker gate dielectric suppress the tunnelling current. Next, the capacitance characteristics of SiO₂ and Er₂O₃ single-layer gate dielectric are shown in Fig. 2. It is clearly found that the capacitance of Er_2O_3 single-layer gate dielectric maintains the same capacitance as SiO₂ single-layer gate dielectric. Although Er₂O₃ gate dielectric is thicker than SiO₂ gate dielectric, higher relative permittivity of Er₂O₃ keeps the capacitance holding. This suggests that Er_2O_3 is superior gate dielectric material for nano MOS device.

After the improvement of nano MOS device performances by using single-layer high-kdielectric, double-layer gate dielectrics with Er₂O₃ and SiO₂ layer are used to simulate the nano MOS device. The double-layer structures are always considered to have the same EOT thickness of 2.5 nm. Two structures are considered: a double-layer

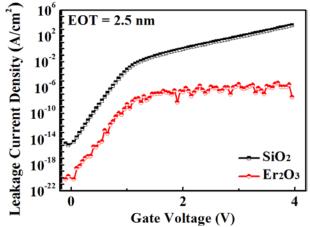


Fig. 1. The gate current density-voltage characteristics of nano MOS with single- layer gate dielectrics (SiO₂ and Er_2O_3).

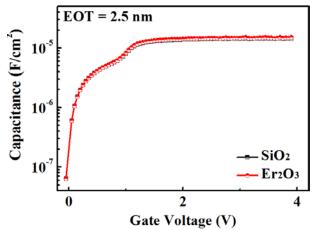


Fig. 2. The capacitance characteristics of nano MOS with single-layer gate dielectrics (SiO₂ and Er_2O_3).

gate stack composed of an interfacial SiO_2 (1 nm) layer and a high-k Er₂O₃ (5.384 nm) layer, and an interfacial SiO₂ (0.5 nm) layer and a high-k Er_2O_3 (7.178 nm) layer. The physical thicknesses of double-layer gate stacks are 6.384 nm and 7.678 nm, respectively. Fig. 3 shows a comparison of the gate leakage current densities through the gate stack versus gate voltage in the different structures. Considering the leakage current density of singlelayer SiO₂ dielectric structure, the leakage current densities of two structures decrease effectively by suppressing vertical tunneling. Among two structures, the gate leakage current density of SiO₂ $(1 \text{ nm}) + \text{Er}_2O_3$ (5.384 nm) gate stack is slightly higher near the gate voltage of 1V. Such behaviour is due to different thickness of two structures. Gate current increases when SiO₂ layer thickness increases from 0.5 nm to 1 nm because the total gate stack thickness is reduced from 7.678 nm to

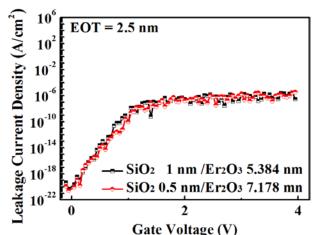


Fig. 3. The gate current density-voltage characteristics of nano MOS with tow dielectric layer (SiO₂ and $\text{Er}_2\text{O}_3/\text{SiO}_2$).

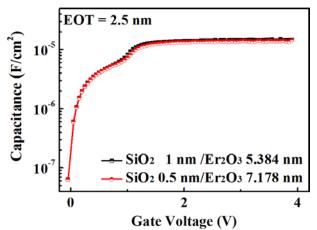


Fig. 4. The capacitance characteristics of nano MOS with tow dielectric layer (SiO₂ and Er_2O_3/SiO_2).

6.384 nm. However, it is still interesting that the gate leakage current of double-layer gate stack is the same as single-layer Er_2O_3 gate dielectric even though the physical thickness is thinner than single-layer Er_2O_3 layer. We believe that small variation of Er_2O_3 thickness cannot be taken into account for simulation due to high relative dielectric constant of Er_2O_3 dielectric layer.

The capacitances of double-layer gate stacks are shown in Fig. 4. In this case, two double-layer structures have the same capacitance because we designed the structure based on the same EOT = 2.5 nm. Even though there are no significant enhancements of nano MOS device performance by using double-layer gate dielectrics with SiO₂ and Er_2O_3 , the simulation of gate leakage current and capacitance are meaningful results. This is because many papers refer that Er_2O_3 layer

Fig. 5. The gate current density-voltage characteristics of nano MOS with two dielectric layer.

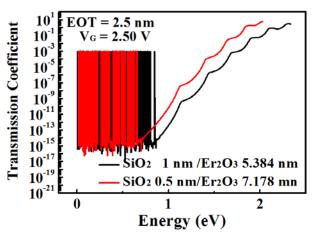


Fig. 6. The capacitance characteristics of nano MOS with two dielectric layer.

deposited on Si produce thin SiO₂ interfacial layer between Er₂O₃ and Si during thermal treatment [5].

For further understanding of single and doublelayer gate stacks, the tunnelling transmission calculated the coefficient using EDISON Nanophysics software. transmission The coefficient describes the behaviour of wave incident on a barrier. It is often used to explain the probability of a particle tunnelling through a barrier. Fig. 5 shows the tunnelling transmission coefficient of single-layer gate dielectrics. Note that Er_2O_3 gate stack shows the randomness distribution of the transmission coefficient from 0 eV to 0.8 eV might be error during simulation, and numerous peaks stem from NEGF formalism. We can observe on the Fig. 5 that the single-layer SiO_2 and Er₂O₃ gate dielectric leads to significant differences between the two gate dielectrics. Single-layer Er₂O₃ gate dielectric shows small

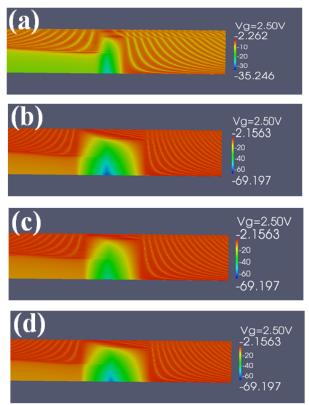


Fig. 7. Computed LDOS in nano MOS with respect to Position (nm), Energy (eV) with (a) single-layer SiO_2 (2.5 nm) (b) single-layer Er_2O_3 (8.897 nm) (c) double-layer SiO_2 (1 nm) + Er_2O_3 (5.384 nm) and (d) double-layer SiO_2 (0.5 nm) + Er_2O_3 (7.178 nm).

transmission coefficient causing low gate leakage However, physically thinner current. gate dielectric (SiO₂) is vulnerable to electron tunneling. Since the tunneling coefficient approaches to 1 above 1.6 eV, we predict that the electrons which get energy above 1.6 eV easily tunnel through gate dielectric, resulting in high gate leakage current. In addition, the transmission coefficients of doublelayer gate stacks are shown in Fig. 6. From the transmission coefficient of single-layer gate dielectric result, the physically thick double-layer with SiO_2 (0.5 nm) + Er_2O_3 (7.178 nm) would show lower transmission coefficient than SiO₂ (1 nm) + Er_2O_3 (5.384 nm). However, we observe that the transmission are enhanced at SiO_2 (0.5 nm) + Er_2O_3 (7.178 nm) gate stack. This result might be due to very thin SiO₂ layer. Electrons can tunnel through very thin SiO_2 layer (0.5 nm) because a direct tunneling mechanism is predominant in this very thin layer. Therefore, a strong potential discontinuity, induced by a

conduction band offset between SiO_2 and Er_2O_3 , creates a potential well, leading to discrete energy levels and high transmission coefficient [6].

Finally, the local density of states (LDOS) has been computed by EDISON nanophysics software. The quantum-mechanical effect is clear in Fig. 7. In these figures, reddish area represents highdensity of states and blush area displays lowdensity of states. The fringes near the contacts illustrate the existence of interferences between incident and reflected wave function on the barrier [6]. Fig. 7(a) shows that fringes are less reddish than the other figure, representing reflected wave function is small portion of incident wave function. Since Fig. 7(b), (c), and (d) show large bluish area, they contribute to low level gate leakage current density.

CONCLUSION

In summary, we simulated the double-layer gate dielectric by EDISON Nanophysics software to optimize the precise design of the double-layer structure with Er_2O_3 and SiO_2 . Among the proposed double-layer structures, SiO_2 (1 nm) + Er_2O_3 (5.384 nm) is the most effective gate dielectric structure considering physical thickness, gate leakage current density, capacitance and the transmission coefficient.

REFERENCES

- [3] O. Baumgartner, M. Karner, and H. Kosina, SISPAD, pp. 353 (2008)
- [1] T.-M. Pan, C.-L. Chen, W.W. Yeh, and S.-J. Hou, App. Phys. Lett., 89 222912 (2006)
- [2] V. Mikhelashvili and G. Eisenstein, J. Appl. Phys., 95 613 (2004)
- [4] N. Ikarashi, K. Watanabe, K. Masuzaki, and T. Nakagawa, App. Phys. Lett., 88 101912 (2006)
- [5] H.S. Kamineni, V.K. Kamineni, R.L. Moore II, S. Gallies, A.C. Deibold, M. Huang, and A.E. Kaloyeros, J. Appl. Phys., **111** 013104 (2012)
- [6] M. Moreau, D. Munteanu, and J.-L Autran, Jpn. J. App. Phys., 48 111409 (2009)