혼합된 상태에서 각각의 입자의 LJ-parameter 의 변화에 따른 열용량의 변화

윤기훈 ¹, 김준기 ²

세종대학교 화학과

서울시 광진구 능동로 209 세종대학교 영실관 205호 화학과

전화: (010)30915320 이메일: ryunmaije@nate.com

Chemworks (or Chemworks2) ID: sejong-phychem-081550,

SEJONG-PHYCHEM-081534

본 연구는 두개의 서로다른 LJ 입자가 혼합된 계에 대하여 이들 사이의 LJ parameter 변화가 어떠한 영향을 미치는지 모의실험을 하였다. 조사 대상은 비활성 기체인 He 과 Xe 을 기준으로 하여 이들의 LJ parameter 를 기준값으로부터 일정하게 변화시키며 열용량을 관찰하여 진행하였다. 분자간 상호작용만을 고려하여, 단원자 기체인 비활성 기체의 Lennard-Jones potential energy 를 구하였다. Epsilon 값과 sigma 값을 바꿔 Lennard-Jones potential energy 의 변화를 알아보고자 한다. 본 연구를 통해 sigma, epsilon 값이 클수록 Lennard-Jones potential energy 가 커진다는 것을 알 수 있었다.

핵심어: Lennard-Jones potential, epsilon, 비활성 기체

서론

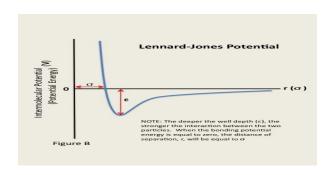
Lennard-Jones potential energy 계산은 bluk 상태 뿐만 아니라 cluster 입자에 관하여 광범위한 연구가 되어 왔다¹. Lennard-Jones potential 계산을 통하여 열역학적 계산과 구조 등을 파악하는 연구가 있다². 이번 실험에서는 상은 1bar 에서 비활성 기체인 Xe 과 He 의 열용량이 비슷하다는 점(4.97cal/(molK))³을 통하여 서로 mixture 된 상태에서 열용량을 계산하였다.

단일성분 LJ 의 경우 LJ parameter 에 따른 상호작용 또는 열역학적 특성을 쉽게 예측 할수 있다. 그러나 두 개 이상의 서로 다른 입자가 공존하는 계 즉 binary LJ-system 에 대해서는 분명하지 않을 수 있다. 이에 두가지 서로다른 LJ 입자가 섞여있는 경우 체계적인 LJ parameter 조절을 통하여 어떤 효과가 있는지 살펴보고자 하며 이에 관찰된 현상에 대한 해석을 시도 하였다. 이를 위하여 He 과 Xe 을 대상으로 하였으며, 일정부피 열용량을 계산하여 parameter 의 변화에 따른 효과를 살펴보았다. Xe 과 He 에 혼합된 상태에서 epsilon 과 sigma 의 변화를 주어 어떤 변화가 일어나는지를 확인하는 것이 이번 실험의 목적이다.

이론 및 계산방법

2-1. Lennard-Jones potential

분자들이 가까이 다가가면, 핵과 전자 사이의 반발력과 전자의 운동에너지 증가가 분자간


혼합된 상태에서 LJ-parameter 의 변화에 따른 열용량의 변화

인력보다 커지게 된다. 이러한 상호 반발은 분자간 거리가 가까워질수록 급격하게 커지게된다. 이러한 의존관계의 일반적인 특징을 나타내서 근사시킨 방법중 하나가 Lennard-Jones potential 이다. 식은 다음과 같다.

$$V_{LJ} = 4\varepsilon \left\{ \left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right\}$$

Epsilon(ϵ)과 sigma(σ)는 각기 물질에 따른 고유 특성이다. 위의 식에서 인력 상호작용을 나타내는 r^{-6} 에 비례하는 항과 척력 상호작용을 나타내는 r^{-12} 에 비례하는 항을 가지고 있다. -6 승은 London force 에 의한 인력에 해당하고 -12 승은 이에 상응 하여 반발력을 나타낸다.

다음은 Lennard-Jones potential 에 대한 일반적인 곡선모양이다.

그림(1) Lennard-Jones Potential Graph (출저: UC-Davis Chem wiki)

서로 다른 입자 1, 2의 상호작용에 관한 Lennard-Jones potential parameter 는 다음과 같이 기술 된다.

$$sigma = \frac{sigma_1 + sigma_2}{2}$$
, epsilon= $\sqrt{epsilon_1 \times epsilon_2}$

2.2 계산방법

A. 조건

입자의 개수를 Xe 106 개와 He 106 개로 고정하였고, 부피는 한 변의 길이가 50.0 Å 상자로 만들었다. 또한 온도를 Xe 과 He 이 충분히 기체상태에 있을 온도인 200K으로 정하였고 속도는 5fs, step 수는 600,000 개를 하였다. 또한 통계적인 data를 얻기 위하여한 data 당 서로 다른 seed number를 넣어 9번 계산하고, 이에 대한 평균치, 표준편차를 확인하였다.

B. epsilon 변화

본 실험에서 서로 다른 입자간의 LJ potential epsilon(ɛ)값을 각각 epsilon(ɛ)값에 기하평균을 하였다. He 의 Epsilon(ɛ) 값을 √(1/4), √(1/3), √(1/2), √2, √3, √4, √5, √6, √7 배 증가 시킴에 따라 Xe 의 Epsilon(ɛ)을 같은 비율로 시켰다. 따라서 전체 Epsilon(ɛ) 값은 고정 시켰다. (He 의 Epsilon(ɛ):0.089kJ/mol, Xe 의 Epsilon(ɛ):0.455kJ/mol)⁴

C. sigma 변화

본 실험에서 서로 다른 입자간의 LJ potential sigma(σ)값을 각각 sigma(σ)값에 산술평균을 하였다. He 의 sigma 값에 + x 를 해주면 Xe 의 sigma 값에 -x 를 해주었다. He 의 sigma 값은 1.57Å 에서 0.5Å 간격으로 5.07Å 까지 하였고 Xe 의 sigma 값은 5.07Å 에서 1.57Å 까지 0.5Å 간격으로 하였다. (He 의 sigma(σ):2.57Å, Xe 의 sigma(σ):4.07Å)⁴

D. 계산방법

1) Newton's equations(MD)+ verlet 알고리즘

힘은 위에서 같이 정의 되었으므로 위치 r과 속도 v에 관하여 표현하면,

$$F_i = \sum_j F_{ij}$$
이고 $\frac{dr_i}{dt} = v_i$, $\frac{dv_i}{dt} = \frac{F_i}{m_i}$ 이므로,

여기서 verlet 알고리즘을 프로그램에 입력하여 계산하였다.

처음 주어진 seed number에서 시스템이 임의의 속도 값을 받으면 그 시스템에 대한 r(t), F(t)를 구할 수 있다. 또한 r과 F를 얻어, 에너지 E를 구하였다. 온도 조절은 조절을 Nose-Hoover thermostat으로 하여 계산하였다.

2)일정부피 열용량 계산법 C_v 는 에너지를 온도에 관하여 편미분한 값이다.

$$C_{\nu} = \left(\frac{\partial E}{\partial T}\right)_{\nu}$$

따라서 다음 식에 대입하여 열용량을 계산하였다.

$$C_{\nu} = \frac{1}{kT^2} < (\delta E)^2 >$$
 (< >는 평균을 의미한다>

$$\delta E = E - \langle E \rangle$$
이므로 $\langle (\delta E)^2 \rangle = \langle (E - \langle E \rangle)^2 \rangle$

위의 식에서 outfile 에서 얻은 E 값과 T를 넣어주어 일정부피 열용량을 계산하였다.

결과 및 토의

상온에서 He 과 Xe 의 열용량은 비슷하다. 이번 실험의 온도는 200K 이고 비활성기체는 200K 부근에서 온도 변화에 따라 열용량의 차이는 크지 않다. 5 따라서 열용량을 측정하여 He 과 Xe 중에 어떤 입자의 parameter 가 더 큰 영향을 주는지에 대하여 알아보았다.

A) Epsilon(ε)

다음은 He 과 Xe 에 epsilon 변화에 따른 열용량 값들이다. 그리고 각 data 의 표준편차와 평균을 고려하여 그림-2을 표현하였다.

x축	1	2	3	4	5	6	7	8	9	10
He-epsilon	0.045	0.051	0.063	0.089	0.126	0.154	0.178	0.199	0.218	0.235
Xe-epsilon	0.91	0.788	0.643	0.455	0.321	0.263	0.228	0.203	0.186	0.172
시드 1	4.712	4.666	4.649	4.598	4.537	4.512	4.474	4.478	4.484	4.460
시드 2	4.732	4.685	4.632	4.586	4.529	4.517	4.499	4.461	4.455	4.437
시드 3	4.710	4.641	4.645	4.568	4.530	4.523	4.471	4.446	4.491	4.458
시드 4	4.692	4.660	4.650	4.599	4.524	4.522	4.483	4.469	4.457	4.453
시드 5	4.670	4.628	4.632	4.566	4.519	4.510	4.492	4.481	4.457	4.441
시드 6	4.691	4.644	4.642	4.553	4.519	4.521	4.476	4.493	4.472	4.440
시드 7	4.685	4.701	4.619	4.596	4.559	4.507	4.496	4.461	4.434	4.427
시드 8	4.707	4.648	4.613	4.594	4.539	4.512	4.482	4.459	4.434	4.460
시드 9	4.685	4.667	4.613	4.563	4.539	4.512	4.489	4.464	4.476	4.435

표.1 각 seednumber에 따른 열용량 값

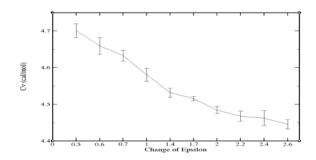


그림.2 헬륨의 epsilon의 값이 증가함에 따른 열용량 값

위의 그래프의 결과로 Xe epsilon 의 변화가 He 변화보다 더 열용량의 영향이 크다는 것을 알게 되었다. 두 입자 간의 epsilon 값에 기하평균을 썼기 때문에, He 과 Xe 사이에 LJ potential 은 변화가 없었다. 그러나 He 과 Xe 각각의 입자의 LJ potential 에 변화가 혼합된 상태에서 LJ-parameter의 변화에 따른 열용량의 변화 있었다는 것을 알게되었다..

He 의 epsilon 값이 커지고 Xe 의 epsilon 값이 감소함으로써, 이 계의 전체 열용량이 작아졌다는 것을 그림.2 를 통해 알 수 있었다. 즉 같은 입자간의 potential 의 총합이 작아졌다는 것을 의미한다. 상대적으로 sigma 값이 큰 Xe 의 epsilon 값이 감소함에 따라 전체 열용량이 감소 했다는 것을 알 수 있었다.

B) $sigma(\sigma)$

다음 표.2 는 He 과 Xe 에 sigma 변화에 따른 열용량 값들이다. 각 data 의 표준편차와 평균을 고려하여 그림-3 에 표현하였다.

x축	1	2	3	4	6	7	8	9
He-sigma	1.570	2.070	2.570	3.070	3.570	4.070	4.570	5.070
Xe-sigma	5.070	4.570	4.070	3.570	3.070	2.570	2.070	1.570
시드1	5.481	4.947	4.586	4.376	4.316	4.347	4.504	4.791
시드2	5.459	4.939	4.566	4.385	4.300	4.364	4.530	4.807
시드3	5.413	4.920	4.599	4.363	4.311	4.364	4.493	4.807
시드4	5.457	4.918	4.598	4.387	4.308	4.358	4.507	4.786
시드5	5.446	4.959	4.569	4.384	4.294	4.367	4.544	4.778
시드6	5.557	4.935	4.590	4.372	4.321	4.364	4.516	4.791
시드7	5.414	4.925	4.589	4.382	4.304	4.365	4.498	4.787
시드8	5.459	4.961	4.577	4.400	4.311	4.363	4.504	4.784
시드9	5.456	4.911	4.600	4.389	4.314	4.341	4.516	4.782

표 2. 각 seed number 에 따른 열용량 값

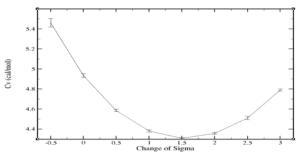


그림.3 헬륨의 sigma 값이 증가함에 따른 열용량 값

He 과 Xe 의 sigma 값의 합을 고정하였기 때문에 sigma 값의 변화에 따라 두 입자간의 LJ potential 에는 변화가 없다. 그러나 같은 입자간 potential 의 변화가 있다는 것을 그림.3 을 통해 알 수 있었다. sigma 값을 변화시켰을 때 LJ potential 값은 $\left(\frac{\sigma}{r}\right)^6$ 에 영향을 받는다. sigma 값의 합은 같고 $\left(\frac{\sigma}{r}\right)^6$ 값이 가장 최대 일 때는 He 의 sigma 값이 가장 크고 Xe 의 sigma 값이 가장 작을 때 또는 그 반대의 경우이다. 따라서 위의 그림.3 에서 그래프의 가운데서 멀어 질수록 열용량이 커진다는 점을 알 수 있었다.

하지만 완전한 좌우 대칭이 아니란 점에 주목을 하였다. Xe 과 He 의 sigma 값이 서로 바꾸었을 때 열용량을 비교해 보았다. sigma 값이 He 이 1.57Å, Xe 이 5.07Å일 때와 He 이 5.07Å, Xe 이 1.57Å일 때 열용량 값이 0.67cal/mol K 이 차이가 났다. 즉 $\left(\frac{\sigma}{r}\right)^6$ 값이 같으므로 epsilon 값이 큰 Xe 이 He 보다 전체시스템의 열용량에 영향을 더 끼친다는 점을 알게 되었다.

가상의 상황을 재현한 이번 실험을 통하여 Xe 이 He 보다 더 Lennard-Jones potential 에 더 많은 영향을 준다는 것을 알게 되었다. He 보다 Xe 이 분자량이 크고 size 가 크므로더 큰 epsilon 값과 sigma 값을 갖게 되어 Xe 이 mixture 된 상태에서 더 큰 영향을 주게된다는 결론을 얻게 되었다. 계산결과를 통하여 이론적인 면을 확인 할 수 있었던 실험인 것 같다. 이번 실험에서 액체 또는 고체 상태라면 확산 계수를 구하여 좀더 확연한 차이를볼 수 있었을 것이다. NPT 조건이 추가되었다면 조성비에 따른 Lennard-Jones potential 의 변화를 알 수 있을 것 같고 온도가 다른 조건에서 실험을 하여 상변화를 예측하고 알아낼수 있었을 것이다. 또한 각각의 parameter 를 동시에 변하면서 열용량을 구하면 더욱 epsilon 과 sigma 에 대한 효과를 알 수 있을 것이다.

참고문헌

- Physical and Chemical Properties Division, Institute of Standards and Technology,
 Broadway, Boulder, Colorado 80303
- 2. Study of Solid-Liquid Phase Changes of Lennard-Jones Nanoclusters. Xiao Dong, Howard University.
- 3. Thermal Conductivity of the Elements: A Comprehensive Review
- 4. C.C. Maitland. Et al, Intermolecular forces:their origin and determination, Clarendon Press, Oxford(1981)
- 5. CRC Handbook of Chemistry and Physics 88th edion. Boca Raton, Florida: Tauylor & Francis Group, 2008