Simultaneous EUV and Radio Observations of Bidirectional Plasmoids Ejection During Magnetic Reconnection

  • Published : 2013.10.08

Abstract

We present a multiwavelength study of the X-class flare, which occurred in active region (AR) NOAA 11339 on 3 November 2011. The EUV images recorded by SDO/AIA show the activation of a remote filament (located north of the AR) with footpoint brightenings about 50 min prior to the flare occurrence. The kinked filament rises-up slowly and after reaching a projected height of ~49 Mm, it bends and falls freely near the AR, where the X-class flare was triggered. Dynamic radio spectrum from the Green Bank Solar Radio Burst Spectrometer (GBSRBS) shows simultaneous detection of both positive and negative drifting pulsating structures (DPSs) in the decimetric radio frequencies (500-1200 MHz) during the impulsive phase of the flare. The global negative DPSs in solar flares are generally interpreted as a signature of electron acceleration related to the upward moving plasmoids in the solar corona. The EUV images from AIA $94{\AA}$ reveal the ejection of multiple plasmoids, which move simultaneously upward and downward in the corona during the magnetic reconnection. The estimated speeds of the upward and downward moving plasmoids are ~152-362 and ~83-254 km/s, respectively. These observations strongly support the recent numerical simulations of the formation and interaction of multiple plasmoids due to tearing of the current-sheet structure. On the basis of our analysis, we suggest that the simultaneous detection of both the negative and positive DPSs is most likely generated by the interaction/coalescence of the multiple plasmoids moving upward and downward along the current-sheet structure during the magnetic reconnection process. Moreover, the differential emission measure (DEM) analysis of the active region reveals presence of a hot flux-rope structure (visible in AIA 131 and $94{\AA}$) prior to the flare initiation and ejection of the multi-temperature plasmoids during the flare impulsive phase.

Keywords