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1. Introduction 

The nonlinear vibration of a spinning beam with 
deployment is analyzed when it is axially moving out from 
a fixed rigid hub. The vibration analysis of a spinning beam 
is important since it can be applied to the spinning 
structures such as robot manipulators, space vehicles, 
drilling machines and so on. 

There are not many studies on a spinning beam with 
axial motion, especially only a few studies on a moving and 
spinning beam with variable beam lengths are searched 
from the author’s literature survey. When dealing with the 
vibration analysis of a spinning beam with axial motion, 
previous studies neglected the axial displacement since it is 

small compared to lateral displacements.
♣

However, the 

axial displacement should be considered seriously since it is 
important when the spinning beam has axial motion. On the 
other hand, deployment has not received enough attentions. 
Present study includes the axial displacement and 
deployment to study the vibration behavior more exactly 
and comprehensively than previous studies. 

The investigation procedure is carried out in following 
steps. First, a spinning beam with deployment is model
ed and governing differential equations of motion are d
erived by Extended Hamilton’s Principle. The axial and
lateral dispalcements are considered but the torsional di
splacement is neglected. Then, the weak forms are disc
retized by the Galerkin method. Finally, time response 
will be obtained by Newmark method. The differences
between linear and nonlinear models are investigated. F
uthermore, the special time-varying beat phenomenon is
also studied and the reason of occurrence is also invest
igated. 
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2. Dynamic Modeling 

The dynamic model for a spinning beam with depl
oyment is shown in Fig. 1. The beam is axisymmetric 
and uniform. The length outside the hub l depends on 
time. Axial displacement u and two lateral displacements v, 
w are considered. The torsional displacement may be 
neglected since the beam has doubly symmetric cross-
section and isotropic material. The beam is extruded with 
axial moving velocity V(t) and constant angular velocity Ω 
by an external force F(t) which is applied at the left end. It 
is assumed that the friction force between the hub and beam 
is neglected.  

The position vector of a general point on the centerline 
outside the fixed hub can be expressed in terms of the axial 
and two lateral displacements while the point inside the hub
does not have lateral displacements, so the position vector o
f centerline outside the hub can be given as 

                                              (1) 
The velocity vector outside the hub can obtained based

on the above position vector. 
 

(2)   
 

The beam is assumed to be slender enough so the effe
cts of shear deformation and rotary are ignored. Euler-
Bernoulli beam theory and von Karman strain theory are 
adopted to get the nonlinear strain and linearized stress. The 
linearized stress outside the hub is given as                                       

                                             (3) 
 

 
 

 
 
 
 
 
 

Fig.1.Modeling of a spinning beam with deployment   
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In order to derive the governing equation, velocity vect
or is used to get the kinetic energy; linearized strain and non
linear stress are applied to derive the potential energy. 
                                               (4) 

 
                                             (5)  
The governing equations of motion are derived by Exte

neded Hamilton’s principle 
                                             (6) 

 

3. Discretization 

In order to obtain dynamic time response of the no
nlinear coupled equations, governing equations of motio
n are transformed into variational equations, i.e., weak 
forms and the Galerkin method is applied to derive the
discretized equations of above weak forms. Based on b
oundary conditions, it is easy to get the admissible fun
ctions for the axial equation and comparison functions 
for lateral equations, by which, the components of disc
retized equations can be computed. The discretized equ
ations are given as  

 

                                             (7) 
  
 
 
 
 
 

(8) 
 
 

 

 

 
(9) 

4. Dynamic Time Response 

Based on above discretized equations, dynamic time res
ponse can be computed by Newmark time integration meth
od. The nonlinear and linear dynamic time response for the
beam tip trajectories are obtained. 

  It is observed that the differences between nonlinea

r and linear models. We can also observe that the time
-varying beat phenomenon occurs. The beat period and
amplitude increase by time during deployment. In order
to investigate the beat phenomenon, FFT analysis is us
ed to find the two close frequencies. By frequency spe
ctra, it is found that the beat phenomenon occurs since
the first and second natural frequency get close to each
other during deployement.  

 
5. Conclusion 

 
Considering the nonlinear effects caused by axial displa

cement to two lateral displacements and coupling effects be
tween two lateral directions, the equations of motion and dy
namic time response have been obtained. The nonlinear effe
cts caused by axial displacement to two lateral displacement
s cannot be neglected under some geometry parameters and
motion conditions. The differences between nonlinear an
d linear models are observed. It is also found that the 
beat phenomenon occurs since the first and second nat
ural frequency get close to each other. 
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