오일 부스팅 펌프의 고진동 저감대책 연구 A Study on the Vibration Reduction of Oil Boosting Pump

박인선† · 김태희* · 신동민* Park In Sun, Kim Tae Hee and Shin Dong Min

1. 서 론

회전기계는 플랜트 산업에서 제품의 생산/이송 및 에너지 생산을 위한 핵심적인 역할을 한다. 그러나 설계/시공 및 운전상의 진동 신뢰성 저하로 인한 고 장이 빈번히 발생하며 많은 비용과 부가적인 손실 을 초래한다.

오일 부스팅 펌프는 원유를 해상으로 이송하기 위 한 주요설비이며 해당펌프의 검수에서 베어링부의 고진동이 발생하였다. 이를 저감하기 위한 진동 진 단 및 진동 해석을 통한 설계 변경 및 부가질량체의 효과를 소개한다.

2. 진동문제

2.1 펌프 사양 및 운전조건

오일 부스팅 펌프는 API 610 규격에 따라 설계된 Horizontal Type이며 자세한 내용은 Table 1과 같 다.

구분	내용
펌프형식	원심펌프(BB2)
운전속도	1490 RPM
용량	3000 m³/h
모터	1900 kW, 1500 RPM

2.2 진동현황

해당 펌프의 검수를 위하여 테스트 베드에서 측정 을 한 결과 API 진동 기준(3mm/s)을 초과하였으며 3축의 진동주파수는 Figure 1, 2와 같다.

+ 교신저자; 정회원, 현대건설 연구개발본부
E-mail : tankpark@hdec.co.kr
Tel : 031-280-7367

* 현대건설 연구개발본부

주파수 분석 결과 펌프의 DE와 NDE에서 운전속 도(1X)의 5차(5X)성분이 주요한 진동으로 나타났으 며 펌프 깃 통과 주파수(Vane Pass Frequency)와 일치하였다.

2.3 축진동 및 비틈진동 평가

1) 축진동 해석(lateral analysis)

로터 축계의 정적/동적 특성 해석을 위해 유한요소 법(finite element method)을 이용하여 구간별로 분 할된 축계 모델링을 실시하였다. Figure 3은 축진 동 해석 결과이다.

2) 비틈진동 해석(torsional analysis)

비틈 위험속도 해석은 비틀림 고유진동수를 계산 하여 운전시 가진력과의 분리여유를 확인하기 위함 이며 해석결과는 Figure 4와 같다.

Figure 3 Lateral Campbell Diagram

3. 진동저감

3.1 설계변경

기존설계에서 진동회피를 위하여 커플링 무게 증 가와 펌프 깃(vane)을 5개에서 7개로 수정하여 제 작을 수행하였다.

3.2 고유진동수(N.F.)

설계 변경된 펌프의 고유진동수를 평가하기 위해 충격시험(impact test)을 수행하였으며 시험은 Dry 상태와 Wet 상태로 구분하여 수행하였다. 시험결과 는 Figure 5와 같으며 Wet 상태에서 펌프 베어링 케이스에서 VPF와 일치하는 고유진동수가 측정되 었다.

3.3 부가질량체 설계

고유진동수 회피를 위하여 펌프 베어링 케이스에 부가질량체(counterweight)를 설계하였으며 Figure 6은 펌프에 부착한 상태이며 Figure 7은 충격시험 결과이다.

3.4 결과

부가질량체를 이용한 진동회피 결과 3축의 펌프 DE와 NDE의 진동은 API 610 규격(3mm/s)을 만족 하였다.

Figure 6 Counterweight for Resonance Reduction

4. 결 론

이번 사례는 펌프의 깃 통과 주파수의 공진으로 인하여 설계변경을 하였으나 베어링 케이스에서 국 부적인 공진이 발생하여 부가질량체 설계를 통해 고유진동수를 회피하였으며 API 610 기준을 만족하 였다.

참 고 문 헌

(1) Song, A. H., 2012, A Case Study on Vibration of Vertical Pumps according to Changing Water Level, Proceedings of the KSNVE Annual Spring Conference, pp. 274~278.