Depth Map Up-sampling Using Maximum Gradient of Color Image

색상 영상의 최대 변화도를 이용한 깊이맵 업샘플링 기법

  • Jung, Jae-Il (Gwangju Institute of Science and Technology) ;
  • Ho, Yo-Sung (Gwangju Institute of Science and Technology)
  • 정재일 (광주과학기술원 실감방송연구센터) ;
  • 호요성 (광주과학기술원 실감방송연구센터)
  • Published : 2012.11.03

Abstract

본 논문은 고해상도의 깊이맵을 얻기 위해서 대응되는 색상 영상의 최대 변화도를 이용한 깊이맵 업샘플링 기술을 제안한다. 기존 알고리즘들이 인접한 화소의 깊이 값을 참조할 때 거리에 따른 가중치를 부여하는 것과 달리, 제안한 방법은 현재 화소와 참조 화소 사이의 최대 색차 변화도를 이용하여 가중치를 부여한다. 이런 접근 방법은 비슷한 색상의 물체가 서로 붙어 있거나 큰 크기의 객체가 존재할 경우에도 모두 올바른 가중치를 부여할 수 있다는 장점을 갖는다. 먼저, 색상 영상의 색차 성분에 대한 변화도 영상을 계산하고, 업샘플링하고자 하는 화소와 참조 화소 사이의 최단 경로 위에서 가장 큰 변화도를 취한다. 변화도가 클수록 다른 객체에 존재할 확률이 높기 때문에 변화도가 큰 참조 화소에는 작은 가중치를 부여하고, 이들의 가중합을 통해 최종 깊이 값을 계산한다. 제안한 방법을 이용하여 깊이맵을 업샘플링한 결과가 기존 알고리즘들에 비해 우수한 결과를 보였다.

Keywords