태양전지 응용을 위한 플렉시블 기판 위에 스퍼터 증착된 CdTe 박막의 구조적, 광학적 특성 연구

A Study on the Structural and Optical Properties of Sputtered CdTe Thin Films Deposited on Flexible Substrates for Solar Cell Application

> 서문수¹, 정학기², 이재형¹ ¹성균관대학교 전자전기공학부, ²군산대학교 전자공학과

요 약

Ⅱ-VI족 화합물반도체인 CdTe는 태양광을 전기로 변화하는데 있어서 이상적인 1.45eV의 직접천이형 에너지 band gap을 가지고 있으며, 1µm 내외의 두께로도 가시광의 99%이상을 흡수하는 높은 광흡수 계수를 가지므로 얇은 두께로도 태양전지 제작이 가능하다. 현재 CdTe를 이용한 태양전지는 최고 16.5%의 변환효율을 보이고 있으며, 대면적의 module에서는 10% 이상의 효율을 나타내고 있다. CdTe 박막의 제작 방법으로는 스크린 프린팅법(screen printing), 스퍼터링법(sputtering), 근접승화 법(CSS:close space sublimation) 등이 있는데, 이중 마그네트론 스퍼터법의 경우, 대면적으로 균일하 게 증착이 가능하기 때문에 양산화에 적합하고, 증착 온도를 낮출 수 있으며, 성장 중 도핑 제어가 용이한 장점을 갖고 있다. 특히, 필름 형태의 polyimide (PI), molybdenum (Mo) 기판의 경우, 유리 기판에 비해 가벼우면서 깨지지 않아 취급이 용이하다는 장점이 있다. 또한 필름 형태로 제작할 경 우 유연성이 있는 태양전지 제작이 가능하여 그 응용 범위를 넓힐 수 있다. 본 연구에서는 PI 및 Mo, 유리 기판 위에 마그네트론 스퍼터법으로 CdTe 박막을 증착하고, 제조 조건에 따른 박막의 구 조적, 광학적 물성을 조사하였다

ABSTRACT

Cadmium telluride (CdTe) films have been prepared on Corning 7059 glass, molybdenum (Mo), and polyimide (PI) substrates by r.f. magnetron sputtering technique. The influence of the sputter pressure on the structural and optical properties of these films was evaluated. In addition, a comparison of the properties of the films deposited on fferent substrates was performed.

Key Words : Cadmium Telluride (CdTe), Sputtering Pressure, Solar cells, Structural Properties

1. 서 론

Ⅱ-VI족 화합물반도체중 CdS/CdTe 계 접합 은 가장 기대되는 접합이라 할수 있는데, 이중 광흡수층인 CdTe는 태양광을 전기로 변환하는 데 이상적인 1.45eV의 직접천이형 에너지 밴드 갭을 가지고 있으며, 1µm내외의 두께로도 가시 광의 99%이상을 흡수하는 높은 광흡수계수를 가지므로 얇은 두께로도 태양전지 제작이 가능 하다[1,2]. 현재 CdTe를 이용한 태양전지는 최 고 16.4%의 변환효율을 보이며, CdTe박막 제작 방법으로는 스크링 프린팅법(screen printing), 스퍼터링법(sputtering), 근접승화법(CSS:close space sublimation)등이 있으며, 이중 마그네트 론 스퍼터법은 박막 제작 속도가 빠른이점으로, 양산화에 적합하고, 증착온도를 낮출수 있으며, 성장 중 도핑 제어가 용이한 장점을 갖고있다. 증착할 기판으로 필름 형태인 polyimide(PI), molybdenum(MO) 기판의 경우, 유리 기판에 비해 가볍고 깨지지 않아 취급이 용이한 장점이 있으며, 이를 태양전지를 제작할 경우 그 응용 범위를 넓힐 수 있다. 본 연구에서는 PI 및 Mo, 유리 기판 위에 스퍼터법으로 CdTe 박막 을 증착하고 압력에 따른 박막의 구조적, 광학 적, 특성을 조사하였다.

2. 실 험

CdTe 박막의 증착은 r.f. 마그네트론 스퍼터 시스템을 사용하였고, CdTe 박막을 증착할 기판으로는 Corning 7059 glass 및 polyimide, Mo sheet를 사용하 였다. 준비된 기판은 세척 및 건조후 원료 물질인 CdTe 타깃 상단으로 부터 5 cm 떨어진 거리에 위치한 기판 지지 대에 고정시키고, 시편 제작을 위해 Mechanical pump와 oil diffusion pump를 사용하여 챔버 내의 진공을 10⁶ Torr 이하로 유지시킨 후 증착원료인 3인치 CdTe(Super Conductor Materials Inc., USA, 99.999%) 타 깃을 r.f. 파워를 이용하여 약 2.5 µm 정도 두 께의 CdTe 박막을 제작하였다.

증착 중 챔버 내의 진공은 MFC(Mass Flow Controller)를 이용하여 Ar가스를 제어 후 원하는 압력을 조절하였고, 그후 RF파워를 80 Watt로 인가하여 플라즈마를 생성시켰다. 기판온도는 기판 지지대 뒤에 부착된 graphite heater를 이용하여 250℃로 유지하였다.

3. 결과 및 검토

그림 1은 CdTe 박막의 스퍼터 압력에 따른 증착률의 변화를 나타낸 것이다. 두께는 약 2.5 µm로 고정하였다. 압력이 증가함에 따라 증착률이 감소함을 알 수 있는데, 이는 높은 압력에서는 평균 자유행정(mean free path)

그림 1. CdTe 박막의 스퍼터 압력에 따른 증착률 변화.

λ가(압력이 2 Pa인 경우, λ= 4mm) 감소하며, 스퍼터된 입자들이 가스 원자들과 상대적으로 많은충돌을 하게 되어 therrmalization이 일어나,입자들의 기판표면에서의 이동도가 작아지고 그 결과 성장률 또한 감소하기 때문이다[3].

그림 2는 스퍼터 압력을 달리하여 유리 기판에 증착한 CdTe 박막의 X-선 회절 결과를 나타낸 것이다. 3 mTorr의 압력의 경우 20=23.6°, 및 39°, 62.3°, 71.2°에서 4개의 회절 peak이 관찰되는데, 이는 CdTe cubic phase의 (111), (220), (311), (331), (422)면에 대응하며, 스퍼터 압력에 관계없이 (111)면 방향의 강한 확인할수있는데, 이것은 (111)면 peak을 방향으로 우선 방위를 갖는 zincblende 구조임을 알 수 있다. 압력이 증가함에 따라 방향의 (111)면 peak 세기가 커지고, FWHM(Full Width Half Maximum)은 작아지는데, 이것은 결정성의 향상 및 박막 내 입자 크기의 증가를 의미한다. 이러하 결과들로부터 스퍼터 압력이 높아짐에 따라 (111)면 방향으로의 결정 성장이 활발해짐을 알 수 있고, PI및 Mo기판에서도 유사한 결과가 나왔다.

그림 2. 스퍼터 압력에 따른 CdTe 박막의 X-선 회 절 패턴.

(a) 3 mTorr

(c) 10 mTorr (d) 20 mTorr 그림 3. 유리 기판 위에 증착된 CdTe 박막의 스퍼 터 압력 에 따른 미세구조

그림 3은 서로 다른 압력에서 유리 기판 위 에 증착된 CdTe 박막의 표면 미세구조를 나타낸 것이다. 그림으로부터 스퍼터 압력은 박막의 표 면 구조에 큰 영향을 미침을 볼 수 있는데, 압력 이 증가함에 따라 표면 거칠기는 입자 크기의 증 가로 인해 커지며, 20mTorr에서는 약 200 nm의 크기를 갖는다.

그림 4는 15 mTorr의 압력에서 기판 종류에 따른 CdTe 박막의 표면 구조를 나타낸 것이다. Polyimide 기판의 경우, 유리 기판과 유사한 미 세 구조를 가지며, 박막 내 입자 크기는 유리 기판보다 약간 큰 것으로 조사되었고, 압력에 따른 미세구조의 변화도 유리 기판의 경우와 비 슷하였다. 그러나 Mo 기판을 사용한 경우, 유리 나 polyimide 기판에서보다 치밀하며 void가 상

대적으로 적은 표면 구조를 가지므로, Mo기판 이 유리나 polyimide 기판에 비해 상대적으로 거친 표면을 갖고 있기 때문으로 생각된다.

(a) Glass

(b) Polyimide

4. 결 론

본 연구에서는 태양전지용 CdTe 박막을 마그 네트론 스퍼터법으로 증착하여 스퍼터 압력에 따fms 박막의 특성을 조사하였다.

낮은 압력에서 증착된 CdTe 박막은 cubic phase의 (111)면 방향으로 우선방위를 가지고 다결정 형태로 성장하며, 스퍼터 압력이 높아짐 에 따라 결정 구조에는 큰 변화 없이 (111)면으 로부터의 회절 peak 세기가 증가하였다. 스퍼 터의 압력이 증가할수록 미세구조에는 큰 변화 없이 박막내 입자의 크기가 증가함을 볼 수 있 다.

참고 문헌

- [1] Ting L. Chu and Shirley S. Chu, "Recent Progress in Thin-Film Cadmium Telluride Solar Cells", Progress in photovoltaics research and application, vol. 1, pp.31-42, 1993.
- [2] G. H. Bauer, "Thin Film Solar Cell Materials", Applied Surface Science, vol. 70/71, pp.650-659, 1993.
- [3] K. Ellmer, J. Phys. D: Appl. Phys. 33 (2000) R17