NT-P022

Biocompatible Formation of Silica/Titania Nanocomposite Shells on Living Chlorella Cells

<u>고은혜¹</u>, 윤연정², 진승욱², 황지민², 이규남², 양성호¹, 최인성^{1,*}

¹Molecular-Level Interface Research Center, Department of Chemistry, KAIST, Daejeon 305-701, Korea, ²Korea Science Academy of KAIST, Busan 614-822, Korea.

The artificial shells of hard inorganic nanocomposites on individual cells would protect the cells physically and chemically, and control cell division. These emerging properties could be combined with cell-surface functionalizations for applications to cell-based sensors and assays as well as for fundamental studies on single-cell biology. In this work, individual Chlorella cells were encapsulated within a silica/titania nanocomposite shell in a biocompatible fashion that utilized a designed peptide, RKKRKKRKKDDDDDDDDD, as a catalytic template for formation of both SiO₂ and TiO₂ on the cell surface. The cell viability was maintained, and the division of the encapsulated Chlorella cells was controlled. The cell viability was enhanced compared with the TiO₂-shell formation. In addition, the incorporation of TiO₂ to the shell made it possible to anchor the ligands of interest to the shell via catechol chemistry. All in all, the combination of biological SiO₂ and abiolgical TiO₂ for the shell formation gave more tunability of the artificial shells compared with the SiO₂ or TiO₂ shells only.

Keywords: Artificial spore, Single cell encapsulation, Silica/titania nanocomposite