TT-P024

Photoluminescence Studies of ZnO Thin Films on Porous Silicon Grown by Plasma-Assisted Molecular Beam Epitaxy

<u>Min Su Kim</u>¹, Giwoong Nam¹, Soaram Kim¹, Dong-Yul Lee², Jin Soo Kim³, Jong Su Kim⁴, Jeong-Sik Son⁵, Jae-Young Leem^{1,*}

¹Inje University, ²Samsung LED Co. Ltd., ³Chonbuk National University, ⁴Yeungnam University, ⁵Kyungwoon University

ZnO thin films were grown on porous silicon (PS) by plasma-assisted molecular beam epitaxy (PA-MBE). The optical properties of the ZnO thin films grown on PS were studied using room-temperature, low-temperature, and temperature-dependent photoluminescence (PL). The full width at half maximum (FWHM) of the near-band-edge emission (NBE) from the ZnO thin films was 98 meV, which was much smaller than that of ZnO thin films grown on a Si substrate. This value was even smaller than that of ZnO thin films grown on a sapphire substrate. The Huang-Rhys factor S associated with the free exciton (FX) emission from the ZnO thin films was found to be 0.124. The Eg(0) value obtained from the fitting was 3.37 eV, with $\alpha = 3.3 \times 10^{-2}$ eV/K and $\beta = 8.6 \times 10^{3}$ K. The low- and high-temperature activation energies were 9 and 28 meV, respectively. The exciton radiative lifetime of the ZnO thin films showed a non-linear behavior, which was established using a quadratic equation.

Keywords: Zinc oxide, Porous silicon, Molecular beam epitaxy, Photoluminescence