A Hybrid Neural Network model for Enhancement of Speaker Recognition in Video Stream

비디오 화자 인식 성능 향상을 위한 복합 신경망 모델

  • Lee, Beom-Jin (School of Computer Science and Engineering, Seoul National University) ;
  • Zhang, Byoung-Tak (School of Computer Science and Engineering, Seoul National University)
  • 이범진 (서울대학교 컴퓨터공학부) ;
  • 장병탁 (서울대학교 컴퓨터공학부)
  • Published : 2012.06.22

Abstract

대부분의 실세계 데이터는 시간성을 띄고 있으므로 시간성을 지닌 데이터를 분석할 수 있는 기계 학습 방법론은 매우 중요하다. 이런 관점에서 비디오 데이터는 다양한 모달리티가 결합된 대표적인 시간 데이터 이므로 비디오 데이터를 대상으로 하는 기계 학습 방법은 큰 의미를 갖는다. 본 논문에서는 음성 채널에기반한 비디오 데이터 분석 방법의 예비 연구로 비디오 데이터에 등장하는 화자를 인식할 수 있는 간단한 방법을 소개한다. 제안 방법은 MFCC (Mel-frequency cepstrum coefficients)를 이용하여 인간 음성 특성의 분포를 분석한 후 분석 결과를 신경망에 입력하여 목표한 화자를 인식하는 복합 신경망 모델을 특징으로 한다. 실제 TV 드라마 데이터에서 가우시안 혼합모델, 가우시안 혼합 신경망 모델, 제안 방법의 화자 인식 성능을 비교한 결과 제안 방법이 가장 우수한 인식 성능을 보임을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단, 한국산업기술평가관리원