Abstract
We have carried out simultaneous 22GHz $H_2O$ and 44GHz Class I $CH_3OH$ maser survey of 112 ultra-compact HII regions (UCHIIs) twice in 2010 and 2011. We detected $H_2O$ maser and $CH_3OH$ maser emission from 76(68%) and 49(44%) UCHIIs, respectively. Among them 15 $H_2O$ masers and 32 $CH_3OH$ masers are new detections. These high detection rates suggest that the occurrence periods of both masers are significantly overlapped with the UCHII phase. $CH_3OH$ masers always have small (<10 km s-1) relative velocities with respect to the natal molecular cores, while $H_2O$ masers often show larger velocities. We find 20 UCHIIs with $H_2O$ maser lines at relative velocities >30 km s-1. The formation and disappearance of $H_2O$ masers is frequent over one-year time interval. In contrast, $CH_3OH$ masers usually do not show substantial variation in intensity, velocity, or shape. The isotropic luminosities of both masers well correlate with the bolometric luminosities of the central stars when data points of lowand intermediate-mass protostars are added: $L_{H_2O}=5.89{\times}10^{-9}{(L_{bol})^{0.69}}$ and $L_{CH_3OH}=4.27{\times}10^{-9}{(L_{bol})^{0.62}}$. They also tend to increase with the 2cm radio continuum luminosity of UCHIIs and the 850 um continuum luminosity of the associated molecular cores. We discuss some individual sources.