Using Light Travel Time Effect to Detect Circumbinary Planets with Ground-Based Telescopes

  • Published : 2012.10.17

Abstract

In the past few years, two-planet circumbinary systems (e.g., HW Vir, NN Ser, DP Leo and HU Aqr) have been detected around short-period eclipsing binaries using ground-based telescopes. The existence of these planets has been inferred by interpreting the O-C variations of the mid-eclipse times. We have tested the orbital stability of these systems and propose to use Light Travel Time Effect (LITE) to detect such circumbinary planets from the ground. We generated synthetically the LITE signal of a two-planet circumbinary system with the aim to apply an analytic LITE model to recover the underlying synthetic system. To mimic a degree of realism inherent to ground-based observations, we added to the synthetic LITE data white noise with a Gaussian distribution and sampled the synthetic LITE signal randomly. We successfully recovered the original system demonstrating that two-planet circumbinary systems can be detected using ground-based telescopes, provided the timing measurements of the mid-eclipses are sufficiently accurate and the observing baseline is long enough to ensure a sufficient coverage of all involved periods. We used HU Aqr as a test system and applied our model to its proposed planetary bodies considering near-circular orbits. We present the results of our calculations and discuss the LITE-detectability of a HU Aqr-like system.

Keywords