[¥GC-30] Search for galaxy clusters in SA22

Jae-Woo Kim^{1,2}, Myungshin Im^{1,2} and Minhee Hyun²

¹ CEOU/Dept. of Physics and Astronomy, Seoul National University

² Dept. of Physics and Astronomy, Seoul National University

The galaxy cluster is a good laboratory to test the cosmological model as well as the evolution of galaxies in the dense region. However the lack of wide and deep near-IR datasets has prevented to identify galaxy clusters at z>1. Here we merge a wide, deep near-IR datasets of UKIDSS DXS (J and K bands) and IMS (J band) with the CFHT Legacy Survey (CFHTLS) ugriz catalogue to detect galaxy clusters. We identify candidate galaxy clusters at z>0.8, where the near-IR dataset plays an important role to detect galaxies efficiently. The cluster mass is also estimated based on the cluster richness and the semi-analytical cosmological simulation.

[\(\pm GC-31\)] Missing Type I AGNs in the local universe

Ji Gang Kim¹, Jae Hyuk Kim¹, Seung Eon Lee¹,
Daeseong Park², Jong-Hak Woo², HongJin Kwon¹

¹Gyeonggi Science High School

²Astronomy Program, Department of Physics and Astronomy ,Seoul National University

Type I AGNs are classified by the presence of broad emission lines while Type II AGNs show narrow emission lines only. All-sky surveys such as SDSS provide large AGN samples for statistical studies. However, the AGN samples suffer selection bias due to the incomplete selection criteria. To investigate the missing Type I AGNs in optical spectroscopic surveys, we start with a sample of SDSS Type II AGNs at 0.02 < z < 0.05, using the MPA-JHU SDSS DR7 catalog. We search for the hidden broad Ha component with both visual inspection and the multi-component spectral decomposition method. Out of 1383 Type II AGNs, we find a total of 62 missing Type I AGNs (~4.5%). The sample has mean black hole mass, log ($M_{\rm BH}/M_{\rm SUN}$)=6.48±0.53, and luminosity, log ($L_{\rm Ha}/{\rm erg}$ s⁻¹)=40.52±0.33, with Eddington ratio, log ($L_{\rm bol}/L_{\rm Edd}$)=-1.51±0.41. We will describe the sample and present the $M_{\rm BH}-\sigma_*$, and $M_{\rm BH}-M_*$ relations of the sample in the context of the BH-galaxy coevolution.