[7ID-09] Design and Construction of Detector Module for UFFO Burst Alert & Trigger Telescope Aera Jung¹, Salleh Ahmad², Pierre Barrillon², Søren Brandt³, Carl Budtz-Jørgensen³, Alberto J. Castro-Tirado⁴, Pisin Chen⁵, Ji Nyeong Choi¹⁰, Yeon Ju Choi⁶, Paul Connell⁷, Sylvie Dagoret-Campagne², Christopher Eyles⁷, Bruce Grossan⁸, Ming-Huey A. Huang⁹, Soomin Jeong¹, Ji Eun Kim¹, Min Bin Kim¹, Sug-Whan Kim¹⁰, Ye Won Kim¹, A.S. Krasnov¹¹, Jik Lee¹, Heuijin Lim¹, Eric V. Linder^{1,8}, T. - C. Liu⁵, Niels Lund³, Kyung Wook Min⁶, Go Woon Na¹, Ji Woo Nam⁵, Mikhile I. Panasyuk¹¹, Il Hung Park¹, Jakub. Ripa¹, Victor Reglero⁷, Juana M. Rodrigo⁷, George. F. Smoot^{1,8}, Jung Eun Suh¹, Sergei. Svertilov¹¹, Nikolay Vedenkin¹¹, Min-Zu Wang⁵, Ivan Yashin¹¹, and the UFFO Collaboration ¹Ewha Womans University, Seoul, Korea, ²University of Paris-Sud11, Orsay, France ³Technical University of Denmark, Copenhagen, Denmark, ⁴Institutode Astrofisica de Andalucía-CSIC, Granada, Spain, ⁵National Taiwan University, Taiwan ⁶Korea Advanced Institute of Science and Technology, Daejeon, Korea, ⁷University of Valencia, Valencia, Spain, ⁸University of California, Berkeley, USA, ⁹National United University, Miao-Li, Taiwan, ¹⁰Yonsei University, Seoul, Korea, ¹¹Moscow State University, Moscow, Russia One of the key aspects of the upcoming Ultra-Fast Observatory (UFFO) Pathfinder for Gamma-Ray Bursts(GRBs) identification will be the UFFO Burst Alert & Trigger Telescope(UBAT), based on a novel space telescope technique. The UBAT consists of coded mask, hopper, and detector module(DM). The UBAT DM consists of YSO crystal arrays, multi-anode photo mulipliers, and readout electronics. We will present the design and construction of the UBAT DM, and the response of the UBAT DM to X-ray sources. ## [구ID-10] The Electronics system of the Ultra Fast Flash Observatory Pathfinder Ji Eun Kim¹, Ji Nyeong Choi², Yeon Ju Choi³, Soomin Jeong¹, Aera Jung¹, Min Bin Kim¹, Sug-Whan. Kim², Ye Won Kim¹, Jik Lee¹, Heuijin Lim¹, Kyung Wook Min³, Go Woon Na¹, Il Hung Park¹, Jakub. Ripa¹, Jung Eun Suh¹, and the UFFO collaboration ¹Ewha Womans University, Korea, ²Yonsei University, ³Advanced Institute of Science and Technology The Ultra Fast Flash Observatory (UFFO) pathfinder consists of the UFFO Burst Alert X-ray Trigger telescope (UBAT) and the Slewing Mirror Telescope (SMT). They are controlled by the UFFO Data Acquisition system (UDAQ). The UBAT triggers Gamma-Ray Bursts(GRBs) and sends the position information to the SMT. The SMT slews the motorized mirror rapidly to the GRB position to take the UV/Optical data within a second after trigger. The UDAQ controls each instrument, communicates with the satellite, collects the data from UBAT and SMT, and transfers them to the satellite. Each instrument uses its own field programmable gates arrays (FPGA) for low power consumption and fast processing, and all functions are implemented in FPGAs without using microprocessors. The entire electronics system of the UFFO pathfinder including architecture, control, and data flow will be presented.