펄스데토네이션엔진(PDE)용 DDT 튜브의 제작 및 시험

김도헌* · 이인철* · 최용준** · 공주열** · 구자예***[†]

Manufacturing and Testing of a DDT Tube for a Pulse Detonation Engine

Dohun Kim* · Inchul Lee* · Yongjoon Choi** · Jooyeol Gong** · Jaye Koo***

ABSTRACT

To develop a pulse detonation engine, it needs to understand the mechanism of a detonation initiation, and establish the methods for measuring and analyzing the detonation phenomenon. In this study, DDT tube, which use oxygen-acetylene propellant mixture, were designed and manufactured, and the effect of equivalent ratio and Schelkin spiral on the characteristics of the detonation initiation were discussed.

초 록

펄스데토네이션 엔진의 개발을 위해서는 데토네이션 현상의 이해와 그 발생 및 분석 기법에 대한 고찰이 필요하다. 본 연구에서는 산소(O₂)-아세틸렌(C₂H₂) 추진제 조합을 사용하는 DDT 튜브를 제작하였으며, 추진제 당량비 및 Schelkin spiral 유무에 따른 데토네이션파 생성특성에 관한 실험적 연구를 수행, 데이터를 수집, 분석하였다.

Key Words: Pulse Detonation Engine (펄스데토네이션엔진), DDT Device(DDT 장치), Schelkin Spiral

1. 서 론

펄스데토네이션엔진(Pulse Detonation Engine; PDE)은 고압의 데토네이션파를 주기적으로 발생시켜 기계적 일을 수행하거나, 추력을 얻는 열기관이다. 이는 데토네이션이라는 연소현상을 통해

정적연소에 가까운 연소가 가능하기 때문에 폭연(deflagration) 연소방식의 열기관에 비해 열효율이 우수하며, 압축기 및 터빈과 같은 내부 구동장치가 필요 없어 구조적으로 단순하다는 장점이 있다 [1]. 하지만 데토네이션 현상은 쉽게발생되지 않으며, 전 데토네이션 발생기, DDT장치 등과 같은 부가적인 요소가 필요하다. 국외의 많은 대학 및 연구소에서는 데토네이션 현상의 발생특성에 대한 연구가 현재까지 꾸준히 이루어져 왔지만, 국내에서는 몇몇 대학과 연구기

^{*} 학생회원, 한국항공대학교 대학원 항공우주 및 기계공학과

^{**} 학생회원, 한국항공대학교 항공우주 및 기계공학부

^{***} 종신회원, 한국항공대학교 항공우주 및 기계공학부

[†] 교신저자, E-mail: jykoo@kau.ac.kr

관에서 기초적인 연구만이 수행되었다. 본 연구에서는 PDE 개발을 위해 필요한 데토네이션 현상의 이해와 그 발생 및 분석 기법에 대한 고찰을 위하여, DDT 장치가 삽입된 단일 데토네이션 튜브를 설계/제작하였으며, 당량비 및 DDT 장치의유무에 따른 연소압력파 속도측정 및 배기 충격파가시화 시험이 수행되었다.

2. 본 론

2.1 실험 장치

실험장치는 Fig. 1, 2에 나타낸 바와 같이 흡 기 및 점화부, DDT 튜브, 배기 튜브로 구분할 수 있다. 흡기 및 점화부는 연료와 산화제를 분 사, 혼합하여 점화시키는 영역이고, DDT 튜브는 Schelkin spiral을 장착시켜 데토네이션파로의 발 달을 촉진시키는 역할을 하며, 배기튜브는 압력 트랜스듀서를 이용하여 연소파의 속도를 측정하 는 영역이다. 또한 추진제 공급배관은 연료, 산 소, 퍼지 배관으로 구성되며, 각 배관에는 유체 제어를 위한 솔레노이드 밸브 및 역화 및 폭발 을 방지하기 위한 3중 역화방지기 3개와 고압 체크밸브가 각 배관에 장치되었다. 추진제 는 대 향 배치된 직경 1 mm의 단공 분사기를 통해 대 향류를 형성하며 분사/혼합되며, Schelkin spiral 은 직경 3.5 mm 스테인레스 스틸 용수철강을 피 치 7.1 mm로 길이 150 mm 만큼 감아, Fig. 3에 보이는 바와 같이 차단률 (Blackage Ratio; BR)이 약 49.8%가 되도록 제작하였다.

추진제로 아세틸렌(C₂H₂)과 기체산소(O₂)가 사용되었으며, 탄화수소계 연료 중 가장 데토네이션 발생률이 높은 추진제 조합이다. 아세틸렌/산소추진제는 상온, 상압, 이론혼합비 조건에서 데토네이션 셀 너비, λ가 약 0.1 mm이고, 약 0.001 J의 매우 적은 점화 에너지로 쉽게 점화가 가능하다 [2]. 데토네이션 발생을 위한 튜브의 직경, D는 13 λ 이상이어야 하며, 길이, L은 L/D가 3~10의 범위에 있어야 한다 [3, 4]. 추후 연료가메탄(CH₄)인 조건에서의 시험을 위해 데토네이션 셀 너비는 약 1.8mm로 고려되었고, 이에 따라

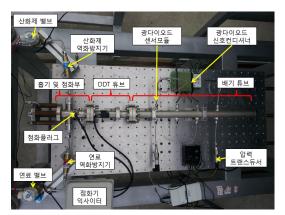


Fig. 1 DDT tube and measurement devices

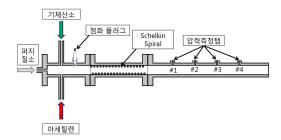


Fig. 2 Schematic of DDT tube assembly

Fig. 3 Schelkin spiral; 150 mm length, 7.1 mm pitch, 49.8% blockage ratio

Table 1. PDE Section Size [unit: mm]

Section	내경	외경	길이
흡기 및 점화부	24.3	33.5	120
DDT 튜브	24.3	33.5	150
배기 튜브	24.3	33.5	600

Table 1과 같이 튜브직경은 24.3 mm, 길이는 L/D가 약 6인 150 mm로 선정되었다.

DDT 튜브 내에서 화염면 및 연소파의 이동속 도 측정을 통하여 데토네이션의 발생여부를 판 단할 수 있다. 이를 측정하기 위한 방법으로, 광

학 센서를 이용한 화염면 전파속도 및 연소 압 력파 이동속도를 time of flight(TOF) 기법을 이용해 도출하는 방법 등이있다. 본 연구에서는 고속응답 압력 트랜스듀서를 이용한 압력파 전 파속도를 도출하여 데토네이션 발생여부를 판별 하였는데, 이는 데토네이션파가 화염면 없이 전 파될 수 있기 때문에 데토네이션 판단법으로써 더 정확하다[4]. DDT 튜브에서의 화염 발달 상 태를 확인하기 위하여, 압력 트랜스듀서를 배기 튜브 상에 거리가 300 mm가 되도록 Fig. 2에 나타낸 #1, #4 위치에 설치하였다. 실험시 측 정된 각 위치에서의 압력상승지점 사이의 시간 차를 이용하여 화염면의 속도를 계산할 수 있고, 이를 통하여 데토네이션의 발생여부의 판단이 가능하다. 또한, 배기튜브를 통해 빠져나가는 고 속배출가스의 충격파를 가시화하기 위하여 P7 L.E.D 광원, plano-convex 렌즈 및 Memview 고속 CCD 카메라를 사용한 shadowgraph 기법 을 사용하였다.

Table 2. Experimental Conditions

공급압력 [kgf/cm²]		O/E ul	rl zkul	
아세틸렌	산소	O/F #I	당량비,	
1	2	1.56	1.60	
	2.5	1.75	1.43	
	3	1.91	1.31	
	3.5	2.07	1.21	
	4	2.21	1.13	
	4.5	2.34	1.07	
	5	2.47	1.01	
	5.5	2.59	0.97	
	6	2.71	0.92	
	6.5	2.82	0.89	
	7	2.92	0.86	
	7.5	3.02	0.83	
	8	3.12	0.80	

2.2 실험 조건

실험변수로 아세틸렌과 산소의 당량비 및 DDT 장치의 유무가 선정되었다. 당량비의 경우 Table 2와 같이 아세틸렌은 1 kgf/cm²로 고정을 하고, 산소를 2 kgf/cm²부터 0.5 kgf/cm² 단위로 8 kgf/cm²까지 변화시켜 당량비를 0.8에서 1.6까지 변화시켰으며, 그에 따른 연소압력파의

속도측정 및 배기플룸에서의 압력파 가시화가수행되었다. 또한 DDT 장치로 길이 150 mm의 Schelkin spiral을 제작하였고, 동일한 당량비 조건하에서 Schelkin spiral 여부에 따른 데토네이션파의 경향성을 살펴보았다. 모든 점화과정은 퍼지 - 1초간 추진제분사 - 3초 카운트 - 점화기 작동 순서로 수행되었으며, 격막없이 대기압조건에서 연소되었다.

2.3 연소압력파 속도 측정결과

Figure 4는 DDT 튜브의 유무와 당량비에 따른 튜브 내에서의 화염 속도에 대한 그래프 이다. 당량비가 약 0.89이고 DDT 장치가 있는 경우 연소압력파의 속도는 약 2000 m/s로 계산되었으며, 이는 CEA를 통해 계산된 C-J 속도에 근사한 값이며, 이 경우에만 데토네이션 파가 생성되었음으로 간주할 수 있다. 다른 모든 케이스에서는 당량비에 따른 약한 경향성은 보였으나, 대부분 1000 m/s 이하로 매우 낮은 압력파 속도가 계산되어 압력측정구간 내에서는 데토네이션이 발생하지 않은 것으로 판단된다. 이는 추진제의 불충분한 혼합, 튜브 충진률(fill fraction)의 차이 및당량비 변화에 따른 데토네이션 셀 크기의 증가로 튜브직경이 데토네이션 생성조건 한계에 못미친 것을 원인으로 생각할 수 있다.

Figure 5에서 P/T #1은 튜브 상류쪽의 압력 트 렌스듀서에서 측정된 압력이고 #4은 튜브하류 열린 끝과 가깝게 설치된 압력 트랜스듀서에서 측정된 압력값을 나타낸다. 점화기로부터 발생된 연소압력파가 열린단쪽으로 이동하고 #1과 #4의 순으로 급격한 압력의 증가가 측정된다. 이때 튜 브의 상류 닫힌 끝으로 이동하는 압력파가 위상 이 바뀌지 않은 정압으로 반사되어 다시 P/T #1 을 지나가기 때문에 단계적인 압력상승을 유발 하는 것으로 생각된다. 또 튜브하류의 열린 끝에 서부터 반사되는 부압 반사파와의 중첩으로 인 해 압력파는 감소하게 되고 이 때문에 압력측정 값이 감소하는 것으로 판단된다. 여기서, 측정된 압력과 시간차이를 이용하여 튜브 안에서 발생 되는 화염파의 속도를 측정할 수 있다. Fig. 3 의 연소조건인 당량비 0.89일 때 화염의 속도는 약 2000 m/sec로 데토네이션이 발생했다는 것을

유추할 수 있다.

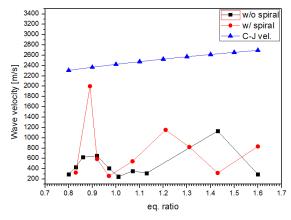


Fig. 4 The dependence of combustion wave velocities on the equivalent ratios and the comparison with the Chapman –Jouget velocity

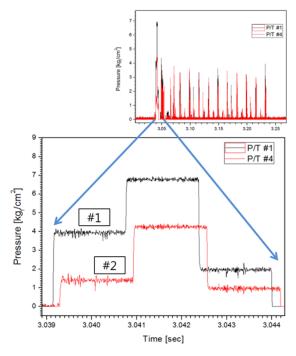


Fig. 5 Single-cycle pressure traces measured at the exhaust of detonation tube; =0.89, w/ 150 mm Schelkin spiral

2.4 배기 충격파 가시화 결과

당량비 1.07, 150 mm 길이의 Schelkin spiral을 장치하였을 경우, 배기튜브 끝단에서 가시화된 shadowgraph 이미지는 Fig. 6과 같으며, 같은 조건에서 연소압력파의 속도는 545.45 m/s로 측정되었다. Fig. 7의 첫 번째 사진과 두 번째 사진은 당량비가 약 1.21일 때 점화 후 배출되는 가스의 충격파 선단부의 가시화 이미지이다. 두 사진의 시간간격은 58 μ sec이고, 이 때 충격파경계면의 이동거리는 51.066 mm이므로 충격파의 속도는 856.89 m/sec임을 알 수 있다. 같은 조건에서 측정된 압력측정부 사이에서의 연소압력파 전파속도는 약 1153.82 m/s이며, 이는 튜브 끝단에서의 미연가스 혼합기가 자연대류로인해 외부 공기와 혼합되었기 때문에 충격파의속도가 감소한 것으로 보인다 [5].

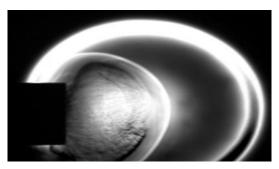


Fig. 6 Shadowgraph images of Exhaust Plum, Schelkin spiral length=150mm, =1.07

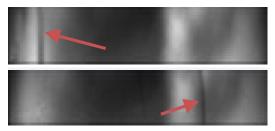


Fig. 7 Shadowgraph images of the shockwave at the downstream of the exhaust tube; time period=58 μ sec, Schelkin spiral length =150 mm, =1.21

3. 결 론

산소-아세틸렌 추진제를 사용하는 DDT튜브를 설계/제작하였으며, 당량비 변화 및 Schelkin spiral 유무에 따른 연소압력파의 속도측정과 배 기 충격파의 가시화 시험을 수행하였다. 추진제 혼합 및 당량비에 따른 셀크기 변화로 인한 데 토네이션 생성이 매우 드물게 나타났으나, 연소 압력파의 압력측정을 통해 연소압력파의 속도를 계산하고 데토네이션 현상의 발생여부를 판단할 수 있었으며, 고속촬영장비를 통해 대기로 배출되 는 연소압력파의 가시화가 가능하였다. 현재의 실 험장치 구성으로 당량비와 DDT장치에 따른 데토 네이션파의 생성유무와 그 경향성에 대해서 완벽 한 신뢰성을 부여하기에는 어려웠으나, 본 연구에 서 얻은 많은 경험적 데이터는 정량적인 데토네이 션 현상의 발생특성에 관한 연구에 많은 도움이 될 것으로 생각된다.

참 고 문 헌

- F. K. Lu et al., "Experimental Study on Deflagration-to-Detonation Transition Enhancement Methods in a PDE," 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2006-7958, 2006.
- M. Kaneshige and J. E. Shepherd, Detonation Database, GALCIT Technical Report FM97-8 (1997)]
- 3. K. K. Kuo, "Principles of Combustion," 2nd Ed., John Wiley and Sons, Inc., 2005.
- 4. W. Fickett, and W. C. Davis, "Detonation Theory and Experiment", Dover Publications Inc., Mineola, New York, 1979; Fickett-Davis cycle: pp. 35-38.
- F. R. Schauer et al., "Detonation Initiation of Hydrocarbon-Air Mixtures in a pulsed Detonation Engine," 43rd AIAA Aerospace Science Meeting, AIAA 2005-1343, 2005