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ABSTRACT: A novel approach for analysis of criticality with respect to path and to activity in networks with fuzzy 
activity durations is proposed. After recalling the Yager ranking method, the relative degree of criticality of activities and 
paths are defined. An efficient algorithm based on path enumeration to compute the relative degree of criticality of 
activities and paths in networks with fuzzy durations is proposed. Examples of former researches are employed to 
validate the proposed approach. The proposed algorithm has been tested on real world project networks and experimental 
results have shown that the algorithm can calculate the relative degree of criticality of activities and paths in a reasonable 
time. 
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1. INTRODUCTION 

The critical path method (CPM)  [21] is a network-
based method designed to assist in the planning, 
scheduling and control of real world projects and CPM 
has become one of the tools that are most useful in 
practice. The activity durations in the CPM are 
deterministic and known; similarly the vast majority of 
the research efforts in project scheduling assume 
complete information about the scheduling problem to be 
solved, e.g.  [8], although the activity durations are usually 
difficult to estimate precisely  [19]. In fact, uncertainty is 
an attribute of information  [38]. This is why the Program 
Evaluation and Review Technique (PERT)  [26] and 
Monte Carlo simulation  [30] based on the probability 
theory have been developed. So far in the literature, 
hundreds of papers have used these stochastic approaches 
and research in this area is still carried out  [9]. In 
stochastic PERT the exact determination of the total 
project duration is generally intractable, except when the 
graph is a series-parallel one  [13]. Thus, approximation 
techniques, like transforming the original network into a 
series-parallel one  [10], have been proposed. Due to the 
uniqueness of projects  [28], historical data about activity 
durations are not available. As activity durations have to 
be estimated by human experts, under unique 
circumstances, project management is faced with 
judgmental statements that are imprecise. In those 
situations, the fuzzy set scheduling literature recommends 
the use of fuzzy numbers for modeling durations, rather 
than stochastic variables  [19]. Shipley et al.  [31] and 
Lootsma  [25] have compared the fuzzy approach with the 
stochastic approach. 

Fuzzy critical path methods have been proposed since 
the late 1970s ( [17],  [27],  [29]). In this approach, the 

problems of determining the possible values of the latest 
starting times and floats of activities in networks with 
fuzzy durations constitute important and challenging 
problems which have attracted intensively attentions. The 
possible values of the earliest starting times can be 
computed by means of a forward recursion procedure 
comparable to the one used in conventional CPM 
problems  [3]. Unfortunately, the backward recursion 
issued from classical CPM is indeed not sound if 
durations are described by means of fuzzy numbers, in 
fact, the backward recursion takes the imprecision of 
some duration twice into account  [13]. Several authors 
tried to cope with this problem. Kaufmann and Gupta  [20] 
and Hapke et al.  [18] proposed a backward recursion that 
relies on the ‘optimistic’ fuzzy subtraction and they 
provided good results for particular networks. 
Zielinski  [39] has determined the possible values of the 
latest starting times of activities by proposing polynomial 
algorithms. Dubois et al.  [12] have proposed an algorithm 
based on path enumeration to compute optimal intervals 
for latest starting times and floats. Fortin et al.  [16] have 
provided a solution to the problem of finding the maximal 
floats of activities and Yakhchali and Ghodsypour  [35] 
have proposed a hybrid genetic algorithm for the problem 
of finding the minimal floats of activities. 

The criticality analysis in networks with fuzzy activity 
durations is a more realistic approach than the traditional 
ones. Chen  [5] proposed an approach based on the 
extension principle and linear programming formulation 
to critical path analysis for a network with fuzzy activity 
durations. Chen and Hsueh  [6] developed an approach to 
critical path analysis based on the linear programming 
and the Yager’s ranking method. Chen and Huang  [7] 
combined fuzzy set theory with the traditional methods to 
compute the critical degrees of activities and paths. 
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Chanas and Zielinski  [4] applied Zadeh’s extension 
principle to the classical criticality concept treated as a 
function of activity duration and proposed two methods 
for computing the path degree of criticality. Chanas et 
al.  [2] introduced the notion of necessary criticality  both 
with respect to paths and activities and proposed methods 
for calculating the degree of necessary criticality of a path. 
The idea of partitioning is used by Yakhchali and 
Ghodsypour  [36] to develop an algorithm for determining 
various type of critical activity. The problems of the 
necessarily and possibly critical paths in the networks 
with imprecise activity and time lag durations have been 
discussed by Yakhchali et al.  [33],  [34]. Liberatore  [24] 
presented an approach for fuzzy critical path analysis that 
is consistent with the extension principle. 

This paper will provide a novel approach for critical 
analysis in project networks with fuzzy activity durations. 
The new definition of the relative degree of criticality of 
paths is proposed and based on it, the notion of the 
relative degree of criticality of activities is introduced. 
These degrees are computed by a path enumeration 
algorithm. The results of applying the proposed approach 
in two examples discussed in previous studies are 
compared to proof the validity of the approach. 

 
2. Terminology and Representation 
The project scheduling problems to be dealt with 

throughout this paper can be stated as follows. A set 
V={1,2, …, n} of activities has to be executed where the 
dummy activities 1 and n represent the beginning and the 
termination of the project, respectively. Activities can be 
represented by an activity-on-node (AON) network G=<V, 
E> with node set V, arc set E. Assume without loss of 
generality that the activities topologically numbered such 
that an arc always leads from a smaller to a higher node 
number. 

Activity durations are determined by means of fuzzy 
numbers. Fuzzy numbers express uncertainty connected 
with the ill-known activity durations modeled by these 
numbers which generate possibility distributions (see 
Error! Reference source not found.) for the sets of 
values containing the unknown activity durations Error! 
Reference source not found.. A fuzzy number, a~ , is a 
normal convex fuzzy set in the space of real number with 
an upper semi-continuous membership function a~ . A 
fuzzy set is convex if and only if its membership function 
is quasiconcave, i.e., it fulfills the condition: 

)}()({)( y,xminz a~a~a~    for each x, y, z such that ][ y,xz   
Error! Reference source not found.. 

2. 1. Fuzzy Criticality 

Fuzzy number id
~

 imprecisely determines a duration 

time of an activity i, Vi . The membership function id
~  

generates a possibility distribution for the duration time 
of the activity i, Vi . It would be accurate to say that the 

ascertain of the from “ iv  is id
~

”, where iv  is a variable 
and id

~
 is a fuzzy number, generates the possibility 

distribution of iv  with respect to the following formula 
(see Error! Reference source not found.): 

)()( xxvPoss
id

~i 
, z  (1) 

The notation of configuration denoted by   has been 
defined by Buckley Error! Reference source not found. 
to relate the fuzzy case to the deterministic case of 
classical PERT/CPM problems. A configuration is tuple 
  ( nd,...,d,d 21 ) of activity durations such that id , Vi . 
The (joint) possibility distribution over configurations, 
denoted by )( , is determined by the following formula: 

)()( id
~Vi dmin

i
 

, 
n
  (2) 

The following formula determines the possibility that 
an activity, Vk , is critical Error! Reference source 
not found.. 

)(critical) is (
in  critical is 





k:
supkPoss

 (3) 
Let us denote the set of all paths in G from 1 to n by P. 
)(kP will denote the set of all paths from P which contain 

the given activity k, } and {)( pkPp|pkP  . Before we 
pass on to the basic consideration, let us recall Yager 
ranking index, which will be helpful in formulating and 
proving an algorithm. 

2. 2. Defuzzification 
The activity durations are defuzzyfied into crisp ones 

by Yager ranking index. Yager Error! Reference source 
not found. provided a procedure for ordering fuzzy sets 
based on the area compensation. “Area compensation” is 
robust and possesses the properties of linearity and 
additivity Error! Reference source not found.. Yager 
ranking index is defined as following: 

 d )( 0.5)(  
1

0

UL ddd
~

I  (4) 
where )( UL d,d   is the  -cut of a given convex fuzzy 

number, d
~

.  
This index is calculated for the given convex fuzzy 

activity duration d
~

 from the extreme values of its  -cut, 
Ld and 

Ud , rather than its membership function. Thus, it 
is not necessary to know the exact form of the 
membership functions of the fuzzy durations, although 
the most of the ranking methods require the explicit form 
of the membership. 

Moreover, the Yager’s ranking method has been used 
by several authors in the literature for fuzzy critical 
analysis, e.g. Error! Reference source not found.. 
Based on this index, the fuzzy problem is transformed to 
a problem with crisp activity durations in the following. 

2. 3. The Relatively Critical Degree 
The length of a path in network with crisp durations is 

defined as the sum of all the durations associated with the 
activities (nodes) belonging to that path. The following 
definition of the length of a path is based on the Yager 
ranking indices. 

Definition 1(Error! Reference source not found.): 
The length of a path p, denoted by pL  and Pp , in G 
with activity durations being fuzzy numbers is defined as 
the sum of the Yager ranking indices of all fuzzy activity 
durations on this path. 

Based on Definition 1, the length of a path p, Pp , is 
determined by formula (5): 

 


pi ip d
~

IL )(  (5) 
The idea of Definition 2 came from the project 

networks with crisp durations, the longest path is the 
critical path. 
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Definition 2: The length of longest path, denoted by 
maxL , in networks with fuzzy durations is defined as the 

length of path with maximum path length, pLmaxL Ppmax  .  
The length of longest path is unique, but in some 

networks there exist various longest paths. The relatively 
critical degree of the longest path is set as “1”. For other 
paths, the relatively critical degree of a given path p, 

Pp , is defined as following. 
Definition 3: The relatively critical degree of a given 

path p, denoted by pRcd , is the ratio of the Yager ranking 
index of the path to the length of longest path. That 
degree is calculated by formula (6): 

max

p
p L

L
Rcd 

 (6) 
These two definitions slightly differ from the ones used 

by Chen Error! Reference source not found.. Definition 
4 introduces the relatively critical degree of a given 
activity k, Vk  . The relatively critical degree of k will be 
denoted by kRcd . 

Definition 4: The relatively critical degree of a given 
activity k, Vk , is maximum of the relatively critical 
degree of all paths from P which contain the given 
activity k. This index is computed by formula (7): 

p
kPp

k RcdmaxRcd
)(


 (7) 

Two examples are provided to compare the relatively 
critical degree of an activity with the degree of possible 
criticality of activities in 3. 3. Comparisons. 

3. The Path Enumeration Approach for Critical 
Analysis 

Initially in the path enumeration approach, all fuzzy 
activity durations are defuzzyfied into crisp ones by 
Yager ranking index. Then the length of all paths, 

Pplp  , are calculated by the proposed algorithm 
(Algorithm 1) and the longest paths are determined. 
Based on Definition 3 and Definition 4, the relatively 
critical degree of all paths and activities are computed.  

3. 1. The Path Enumeration Algorithm 
Algorithm 1 computes all paths in the network G, 

calculates the length of paths and determines the 
relatively critical degree of paths and activities. In 
Algorithm 1, the set of immediate successors of an 
activity j, j V, is denoted by )( jsucc , 

 Ek,j|kjsucc  )()( . 
Fuzzy activity durations are defuzzyfied by Yager 

ranking index in the lines 1 to 3 of the algorithm. Paths 
are made by the recursive procedure ‘Enumeration 
Procedure’. The call to the procedure in the line 6 of 
Algorithm 1 will constructs the set P. The procedure 
updates the length of the longest path and saves the 
current path and its length. The relatively critical degree 
of paths is calculated in the line 8. Analogously, the 
algorithm in line 11 computes the relatively critical 
degree of activities. 

The number of tested paths depends on the topology of 
the network that is potentially exponential but in practice 
the algorithm runs can find the answers in a reasonable 
time on realistic problems. This is discussed in section 3. 
4. Computational Experience. 

 
 
3. 2 Numerical example 
To compare the proposed approach with former 

researches, a project network in Figure 1 which was 
proposed by Chanas and Zielinski Error! Reference 
source not found. is investigated. Chanas and Zielinski 
Error! Reference source not found. used the activity-
on-arc (AOA) convention, but in this paper the proposed 
network was converted to the activity-on-node (AON) 
convention, to adopt the paper’s network representation. 
Two following examples have the same network as 
shown in Figure 1. 

 
Figure 1: A project network 
The notion of fuzzy numbers of the L-R type is recalled 

before the basic consideration. A fuzzy number A
~  is 

called a fuzzy number of the L-R type if its membership 

function A
~

 has the following form Error! Reference 
source not found.: 
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 (8) 
where L and R are continuous nonincreasing functions, 

defined on ),0[  , strictly decreasing to zero in those 
subintervals of interval ),0[   in which they are positive, 
and fulfilling the conditions L(0)=R(0)=1. The 

parameters A  and A  are nonnegative real numbers. 
The fuzzy number of L-R type is denoted by 

RLAA ),,a,a(A    Error! Reference source not found.. 



Algorithm 1: Determining the relatively critical degree of activities and paths 

Input: A network E,VG   

Output: The relatively critical degree of activities and paths 
 

1: for Vi  do 

2: ... )( ii d
~

Id   

3: end for 
4: }{1p   

5: maxL  

6: call Enumeration Procedure (1) 
7: for Pathsp  do 

8: ...  maxpp LLRcd   

9: end for 
10: for Vi  do 
11: ...  )}({ kPp|RcdmaxRcd pk   

12: end for 
 

Enumeration Procedure (j) 

 
a: if nj   then 
b: ... }{pPathsPaths   

c: ...if pmax LL   then 

d: ......  pmax LL   

e: ...end if 
f: else 
g: ...for )( jsucck   do 
h: ...... }{kpp   
i: ......call Enumeration Procedure (k) 
j: ...end for 
k: end if 
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Example 1: Assume that the network in Figure 1 is 
given. The activities durations are fuzzy numbers of L-R 
type as shown in Table 1. 

Table 1: The fuzzy activity durations of Figure 1 

 
 
The Yager’s ranking indices for activities in Table 1, 
)( id

~
I  Vi , are calculated as shown in Table 3, in fact the 
results of lines 1 to 3 in Algorithm 1. The algorithm 
constructs all paths for Figure 1 and computes the length 
of paths as listed in Table 2. According to Definition 2, 
the path {1-3-5-9-11-12} is longest path and 

2627.23Lmax  . Then the relatively critical degree of paths, 
pRcd  Pp , is calculated through the line 8 in the algorithm 

as shown in Table 2. 
Table 2: The length of paths and the relatively critical 

degrees of paths in Example 1 

 
 
Eventually, the algorithm based on Definition 4 

computes the relatively critical degree of activities, 

iRcd
 Vi , as listed in Table 3. 

Table 3: The Yager’s ranking indices of activities and 
the relatively critical degrees of activities in Example 1 

 
 
Example 2: The project network is similar to that in 

Example 1 (Figure 1). Assume that the activity durations 
are fuzzy numbers of the same L-L type, where 

)()( 2x1,0maxxL   as following: 

LL1 0,0,0,0d
~

 )(  LL2 1,1,5.1,1d
~

 )(  LL3 2,0,3,2d
~

 )(  

LL4 2,1,3,2d
~

 )(  LL5 1,1,9,9d
~

 )(  LL6 1,1,5,5d
~

 )(  

LL7 2,0,7,6d
~

 )(  LL8 4,2,9,8d
~

 )(  LL9 0,2,4,3d
~

 )(  
LL10 2,2,4,4d

~
 )(  LL11 3,2,9,6d

~
 )(  LL12 0,0,0,0d

~
 )(  

 
Once again, Algorithm 1 calculates the Yager’s 

ranking indices for activities, as shown in Table 5, to 
compute the length of paths and the relatively critical 
degree of paths. The results are listed in Table 4 in the 
algorithm outputs order. 

Table 4: The length of paths and the relatively critical 
degrees of paths in Example 2 

 
 
The relatively critical degrees of activities are similarly 

computed by Algorithm 1 as shown in Table 5. 
Table 5: The Yager’s ranking indices of activities and 

the relatively critical degrees of activities in Example 2 

 
 
3. 3. Comparisons 
To validate the proposed approach, the results of the 

examples are compared with former researches. Although 
the definition of the relatively critical degree of a path 
differs from the definition of the relative path degree of 
criticality proposed by Chen Error! Reference source 
not found., they compute exactly same values. Chen’s 
approach is based on linear programming formulation. In 
this approach, a pair of linear programs parameterized by 
possibility level   is formulated to calculated the lower 
and upper bounds of the fuzzy total duration at  , then 
the fuzzy critical paths are identified by enumerating 
different values of   and the relative degree of 
criticality of paths are computed by applying the Yager 
ranking method. 

The proposed approach in this paper can determine the 
same degree of criticality of paths without using linear 
programming formulation. The proposed approach 
determines the relative degree of criticality of all paths in 
only one execution, but Chen’s approach determines the 
relative degree of criticality of fuzzy critical paths which 
are identified by enumeration different values of  . In 
addition, the proposed approach calculates the relative 
degree of criticality of all activities at the same time. 

id
~ )(xLi )(xRi

11 RL1 0,0,0,0d
~

 )( )()( x1,0maxxL1  )()( x1,0maxxR1 

22 RL2 1,1,5.1,1d
~

 )( )()( 2
2 x1,0maxxL  )()( x1,0maxxR2 

33 RL3 2,0,3,2d
~

 )( x
3 exL )( )()( x1,0maxxR3 

44 RL4 2,1,3,2d
~

 )( )()( 4
4 x1,0maxxL  x

4 exR )(

55 RL5 1,1,9,9d
~

 )( )()( 4
5 x1,0maxxL  x

5 exR )(

66 RL6 1,1,5,5d
~

 )( )()( x1,0maxxL6  )()( 4
6 x1,0maxxR 

777 RL2,0,7,6d
~

 )(
2x

7 exL )( )()( 2
7 x1,0maxxR 

88 RL8 4,2,9,8d
~

 )( )()( 4
8 x1,0maxxL  )()( 2

8 x1,0maxxR 

99 RL9 0,2,4,3d
~

 )( )()( x1,0maxxL9  )()( 4
9 x1,0maxxR 

1010 RL10 2,2,4,4d
~

 )( )()( 2x1,0maxxL10  )()( 4
10 x1,0maxxR 

1111 RL11 3,2,9,6d
~

 )( )()( 2
11 x1,0maxxL  )()( x1,0maxxR1 

11 RL12 0,0,0,0d
~

 )( )()( x1,0maxxL1  2x
11 exR )(

Paths Path length Relatively critical degree
1-2-4-8-12 13.3000 0.5717

1-2-5-9-11-12 21.4294 0.9212
1-2-6-10-11-12 18.6127 0.8001
1-3-5-9-11-12 23.2627 1.0000

1-3-6-10-11-12 20.4460 0.8789
1-3-7-10-11-12 22.4627 0.9656

Activities Yager's ranking index Relatively critical degree
1 0.00000 1.0000
2 1.16667 0.9212
3 3.00000 1.0000
4 3.10000 0.5717
5 9.10000 1.0000
6 5.15000 0.8789
7 7.16667 0.9656
8 9.03333 0.5717
9 3.00000 1.0000
10 4.13333 0.9656
11 8.16267 1.0000
12 0.00000 1.0000

Paths Path length Relatively critical degree
1-2-4-8-12 13.2500 0.5803

1-2-5-9-11-12 20.9166 0.9161
1-2-6-10-11-12 18.0833 0.7920
1-3-5-9-11-12 22.8333 1.0000

1-3-6-10-11-12 20.0000 0.8759
1-3-7-10-11-12 22.1667 0.9708

Activities Yager's ranking index Relatively critical degree
1 0.0000 1.0000
2 1.2503 0.9161
3 3.1670 1.0000
4 2.8333 0.5803
5 9.0000 1.0000
6 5.0000 0.8759
7 7.1667 0.9708
8 9.1664 0.5803
9 2.8333 1.0000
10 4.0000 0.9708
11 7.8330 1.0000
12 0.0000 1.0000
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Chen Error! Reference source not found. compared 
the relative degree of criticality of paths with Chanas and 
Zielinski’s results Error! Reference source not found., 
this comparison is omitted for the sake of brevity. 

Table 6 compares the relatively critical degree of 
activities, proposed in this paper, with the degree of 
possible criticality of activities, proposed in former 
researches in Example 1 and 2. 

Table 6: The comparison of the relatively critical 
degrees of activities with degree of possible criticality in 
Example 1 and 2 

 
 
The results of Table 6 show that the definition of the 

relatively critical degree of activities is theoretically 
sound. 

3. 4. Computational Experience 
Algorithm 1 has been tested on realistic project 

scheduling problems for the experimental validation of its 
efficiency. For this reason, the algorithm computes the 
relatively critical degrees of paths and activities in project 
networks that have been generated by ProGen Error! 
Reference source not found.. Kolisch et al. Error! 
Reference source not found. are supposed to be 
representative of real project scheduling problems. On 
those problems, activity durations are precisely defined, 
thus the activity durations are converted to triangular 
fuzzy numbers. The choice of fuzzy numbers is not 
important for the test due to the fact that the algorithm 
complexity only depends on the network topology. The 
tested networks can be downloaded from the web site 
http://129.187.106.231/psplib/. 

Different test sets of projects are chosen from this web 
site as shown in Table 7. Table 7 presents the 
performance of the proposed algorithm on libraries of 
project networks, with respectively, 32, 62, 92 and 122 
activities (on 480, 480, 480 and 600 instances of project 
networks, respectively). 

Table 7: The execution times and the number of paths 
are evaluated by Algorithm 1 

 
 
The proposed algorithm has been programmed in 

MATLAB (R2006b) and run on a personal computer with 
1.60 GHz processor (Intel Centrino 1.7) and 512 MB of 
RAM. The overall execution times, expressed in seconds, 
are measured. The results of Table 7 are presented in 
Figure 2 and Figure 3. 

 
Figure 2: Execution times of Algorithm 1  
These tests show that Algorithm 1 can calculate the 

relatively critical degrees of paths and activities in big 
project networks with acceptable execution times. 

 
Figure 3: Number of paths are evaluated by 

Algorithm1 
 

4. Conclusions 

Activities durations, especially at the beginning of 
projects, are ill-known, so they can be modeled by means 
of fuzzy numbers, representing the possible values of 
these durations. With such modeling, the standard 
criticality analysis collapses. Basically this research effort 
aims at analyzing the criticality of activities and paths 
together. In this paper, a novel approach for critical 
analysis in networks with fuzzy activity durations was 
proposed. This approach was summarized in an effective 
algorithm, relies on a path enumeration technique. The 
algorithm computes the length of all paths and calculates 
the relatively critical degree of activities and paths, 
without using linear programming formulation. The 
definition of the relatively critical degree of an activity 
introduced in this paper is practical and theoretically 
sound.  

Extensive computational results are reported using a 
problem set consisting of 2040 instances with up to 120 
activities. The results show that the algorithm can 
calculate the relatively critical degree of activities and 
paths in a reasonable time on realistic problems. Hence, 
the proposed algorithm can be used in future project 
planner software that will cope with uncertainty. 

As topics for further research, it seems possible to 
further develop some heuristics, like Branch and Bound, 
based on the proposed algorithm. 

 
 
  

Activities Relatively critical degree Degree of possible criticality Relatively critical degree Degree of possible cri
1 1.0000 1.0000 1.0000 1.0000
2 0.9212 0.6269 0.9161 0.7500
3 1.0000 1.0000 1.0000 1.0000
4 0.5717 0.6269 0.5803 0.7024
5 1.0000 1.0000 1.0000 1.0000
6 0.8789 0.3854 0.8759 0.4375
7 0.9656 0.9941 0.9708 0.9796
8 0.5717 0.6269 0.5803 0.7024
9 1.0000 1.0000 1.0000 1.0000

10 0.9656 0.9941 0.9708 0.9796
11 1.0000 1.0000 1.0000 1.0000
12 1.0000 1.0000 1.0000 1.0000

Example 2.Example 1.

Nb of activiteis 32 62 92 122
Nb of networks tested 480 480 480 600
Minimal execution time 0.168 0.3271 0.4761 0.6553
Average execution time 0.6014 1.3701 2.4133 3.7385
Maximal execution time 2.5272 6.3469 11.5661 15.9495

Minimal nb of paths 18 33 48 65
Average nb of paths 56.9792 127.35 221.425 325.6933
Maximal nb of paths 204 563 961 1277
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