철도안전법을 적용한 샌드위치 복합재 틸팅열차 차체 구조물의 충돌안전도 평가 연구

A Study on the Crashworthiness Evaluation of Sandwich Composite Tilting Train Carbody Structural according to Korean Railway Safety Law *장형진¹, #신광복¹, 손경소², 한성호³

*H. J. Jang¹, [#]K. B. Shin(shin955@hanbat.ac.kr)¹, K. S. Son², S. H. Han³ ¹한밭대학교 기계설계공학과, ²한국철도공사 기술연구처, ³한국철도기술연구원 신소재틸팅열차 시스템연구단

Key words: Tilting Train, Crashworthiness, Sandwich Composite, Korean Railway Safety Law

1. 서론

최근 고속철도의 영향을 받지 못하는 비수혜지역의 고속화를 위한 200km/h급 전기식 틸팅열차가개발되어 시험운행 중에 있다. 이러한, 틸팅열차는 차량의 경량화를 위해 차체의 1차 부재에 샌드위치복합재를 적용하여 차체 무게 감소, 내구성, 내식성의 향상뿐만 아니라 일체성형으로 인한 생산비절감 및 제조공정 단축 등의 효과를 누리고 있다[1].

이때, 국내 철도안전법에서는 2007년 이후로 개 발되는 철도차량에 대해 충돌안전기준을 명시하 여 충돌시뮬레이션을 수행하고 각 기준에 대한 평가결과를 통해 충돌안전도를 만족하는 모델을 도출해야한다.

충돌안전도 평가는 실제차량을 대상으로 하는 실차시험과 유한요소해석을 통한 시뮬레이션으로 구분되며, 실차시험은 실제 상황과 가장 부합되는 결과를 나타낼 수 있으나, 많은 비용 및 시간이 소요되므로 경제적이면서 효과적인 결과를 얻을 수 있는 해석적 평가가 주로 수행되고 있다.

특히, 샌드위치 복합재가 적용된 철도차량의 충돌안전도 평가 연구는 국내·외에서 그 연구 사례를 찾아보기 힘들며, 이에 틸팅열차의 안전한 차체구조물을 위한 충돌안전도 평가가 반드시 수행되어야 한다.

따라서 본 논문은 샌드위치 복합재가 적용된 철도차량 차체 구조물의 충돌 해석을 위한 충돌유 한요소모델링 기법 제시와 철도안전법을 적용한 충돌안전도 평가를 수행하여 안전기준의 만족여 부를 확인하였다.

2. 샌드위치 복합재 적용 틸팅열차 차체 구조물의 유한요소모델링

해석적 방법을 통한 틸팅열차의 충돌안전도를 평가하기 위해 차량에 적용되는 재료 및 충격 흡수 장치에 등에 대해 선행연구를 수행하였다. 이때, 샌드위치 패널이 적용되는 차체 부분에는 샌드위 치 패널의 면재와 심재를 모두 고려한 방법으로 면재는 적충 쉘, 심재는 솔리드 요소를 사용하였다. 또한, 언더프레임 및 차체 보강재에 대해서는 쉘 요소를 사용하여 국부적인 변형 및 결과를 확인할 수 있도록 하였다.

형상이 복잡한 연결기 및 충격흡수장치 등에 대해서는 동적시험 결과와 동일한 특성을 나타내는 단순화된 모델링을 수행하여 차량에 적용하였다. Fig. 1은 샌드위치 복합재가 적용된 틸팅열차의 Mcp-car와 M-car의 충돌해석모델을 나타낸다.

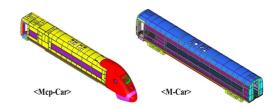


Fig. 1 Finite element model of tilting train

3. 철도안전법을 적용한 틸팅열차의 충돌안전도 평가

틸팅열차의 충돌안전도를 평가하기 위하여 철도안전법에서 명시하고 있는 충돌사고각본-1(정면충돌)에 대하여 충돌해석을 수행하였다. 이때, 틸팅열차는 6량 1편성으로 구성되어 있으며, 전방 3량은 타고오름 현상 및 운전자와 승객의 안전공간

유지 여부를 평가하기위해 3차원 유한요소모델을 적용하였다. 또한, 상대적으로 충돌 영향이 적은 후방 3량에 대해서는 각 구간별 압괴특성을 적용한 1차원 등가모델을 적용하였다[2]. Fig. 2는 전체차량의 충돌유한요소모델을 나타낸다.

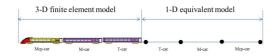


Fig. 2 Interactive model of tilting train

충돌사고각본-1은 상대속도 36km/h의 속도로 동일한 두 열차가 충돌하는 것으로 해석의 효율성 및 에너지의 등가성을 고려하여 강체벽에 18km/h(5m/s)의 속도로 충돌하였다[3]. 이때, 틸팅 열차의 총 중량은 약 311Ton 이며, 초기 운동에너지 를 이론식에 의해 구하면 다음과 같다.

$$E = \frac{1}{2}mv^2 = \frac{1}{2} \times 311 \times 5^2 = 3.9MJ \tag{1}$$

Fig. 3은 충돌시간 동안의 에너지 변환이력 선도를 나타낸 것으로 전체 에너지가 약 4.0MJ로 이론 식으로 구한 값과 약 0.03%의 오차율을 나타냈다.

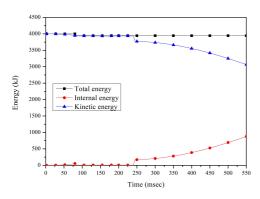


Fig. 3 Energy history curve

Fig. 4는 운전자 공간의 충돌형상을 시간대별 Von-Mises stress 결과로 나타내었으며, 안전기준인 운전자구간 전체 길이의 80%이상유지 조건에 만족하였다. 이때, 운전자 공간을 침투하는 현상은 발생하지 않았으며, 승객탑승구간 역시 1% 미만의 변형으로 안전기준에 만족함을 확인하였다.

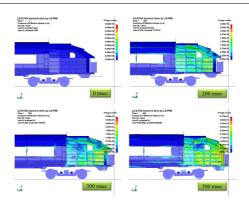


Fig. 4 Deformation and Von-Mises stress by the crash scenario-1

4. 결론

본 논문은 샌드위치 복합재가 적용된 틸팅열차차체 구조물의 충돌 안전도를 평가 연구에 대해수행하였으며, 다음과 같은 결론을 얻었다. 샌드위치 복합재가 적용된 틸팅열차 구조물의 충돌유한요소모델링 기법을 도출하였으며, 철도안전법을 적용한 충돌사고각본-1에 대해 평가를 수행하였다. 이때, 안전기준을 만족하는 차량의 변형이 발생함을 확인하였다.

후기

본 연구는 한국철도공사에서 지원하는 "샌드위치 복합재 적용 틸팅열차 차체 구조물의 충돌안전도 평가" 위탁과제의 일환으로 수행되었으며, 이에 감사드립니다.

참고문헌

- 김승록, 권태수, 정현승, 유원희, 구정서, "한국 형고속 틸팅열차의 전두부 충돌특성 시뮬레이 션," 한국정밀공학회 춘계학술대회논문집, 74, 2005.
- 2. 박민영, 박영일, 구정서, "열차의 3차원 유한요 소해석을 이용한 1차원 충돌 동역학 등가 모델 링 기법" 한국철도학회논문집, **13**, 139-146, 2010
- 3. 이현철, 구정서, "도시형 자기부상열차에 대한 철도안전법과 도시철도안전법의 충돌안전기 준 적용의 비교 연구," 한국철도학회 춘계학술 대회논문집, 742-748, 2008.