Classification of Motor Imagery EEG Signals Based on Non-homogeneous Spatial Filter Optimization

비 동질 공간 필터 최적화 기반의 동작 상상 EEG 신호 분류

  • Kam, Tae-Eui (Dept. of Computer Science and Engineering, Korea University) ;
  • Lee, Seong-Whan (Dept. of Brain and Cognitive Engineering, Korea University)
  • Published : 2011.06.29

Abstract

신체 부위를 움직이는 상상을 할 때, 일반적으로 뇌의 감각 및 운동 피질 영역에서 특정 주파수 대역의 EEG(Electroencephalography) 신호의 세기가 감소하거나 증가하는 ERD(Event-Related Desynchronization)/ERS(Event-Related Synchronization) 현상이 발생한다. 하지만 ERD/ERS는 현상은 피험자에 의존적이고 매시도마다 큰 차이를 보인다. 이러한 문제를 해결하기 위해, 본 논문에서 각 시간-주파수 공간에 대하여 서로 다른 공간 필터를 구성하는 비 동질(non-homogeneous) 공간 필터 최적화 방법을 제안한다. EEG 신호는 시간에 대하여 비정상적(non-stationary) 특징을 가지기 때문에 제안하는 방법과 같이 시간에 따라 변화하는 ERD/ERS 특징을 반영하여 공간적 특징을 추출하는 방법은 시간에 대한 변화를 고려하지 않은 기존의 방법보다 우수한 성능을 보인다. 본 논문에서는 International BCI Competition IV에서 제공하는 4가지 동작 상상(왼손, 오른손, 발, 혀)에 대한 EEG 신호 데이터를 사용하여 동작 상상 분류 실험을 하고 이 결과를 기존의 타 방법들과 비교 분석하였다. 실험 결과, 피험자에 따라 서로 다른 시간-주파수 특징이 추출됨을 확인하였고, 최적화된 공간 필터들이 시간에 따라 변화하는 것을 확인하였다. 또한 이러한 특징을 이용하여 분류를 수행하였을 때, 더욱 우수한 분류 결과를 보임을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단