CFD Analysis of Aerodynamic Characteristics of Regional Turboprop Aircraft Propeller

W. Choi, J.S Choi, I.M Jung, J.H Kim, I.W Lee, S.H Han, Y.S. Won

Propeller shall have high efficiency and improved aerodynamic characteristics to get the thrust to fly at high speed for the Regional turboprop aircraft. That is way Clark-Y airfoil which is used to conventional turboprop aircraft propeller is selected as a blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the propeller design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point of Regional turboprop aircraft. The propeller design results indicate that is evaluated to be properly constructed, through analysis of propeller aerodynamic characteristics using the Meshless method and MRF, SM method.

Keywords: 중형 터보프롭 항공기(Regional Turboprop Aircraft), 프로펠러(Propeller), 전산유체역학(CFD), 다화표계법(Multiple Reference Frame), 미끄럼 격자(Sliding Mesh), 무격자법(Meshless Method)

1. 서 론

FAR PART 25 AIRWORTHINESS STANDARDS 에서는 TRANSPORT CATEGORY AIRCRAFT 에 대한 인증 사항을 나타내며 대표적인 FAR25급 중형 터보프롭 항공기로는 ATR(Avions de Transport Regional)사의 ATR72-500, Bombardier 사의 Q400, 중국항공공업의 MA600 등이 있다.

Fig. 1 Representative FAR25 Class Turboprop Airplane (ATR72, Q400, MA600)

FAR25급 중형 터보프롭 항공기에 장착되는 터보프롭 엔진은 기관 출력에 대한 감속장치의 크기, 무게, 장착위치 등의 한계로 큰 출력을 얻기 어렵고, 공기 저항을 작게 하기 위해 한계가 있으며, 프로펠러의 회전속도 때문에 항공기의 최대속도에 한계가 있는 문제점으로 장기적, 대형 항공기에 거쳐 사용되지 않아. 그러나 최근 항성의 기술로 FAR25급 중형 터보프롭 항공기에 장착되는 엔진 및 프로펠러의 효율이 매우 우수해졌으며 항공기 시장에서 그 수요가 증가하고 있다. 터보프롭 항공기에서 프로펠러는 고속으로 비행할 수 있는 추력을 얻기 위해 가장 효율적으로 개발되어야 하며 그와 더불어 낮은 소음을 유지해야 한다.[1] Fig. 1은 조기경보기 E-2C 2000 항공기에 장착된 최신의 8엽 프로펠러를 나타낸다.

Fig. 1 8 Blade Propeller(E-2C 2000)

본 연구에서는 중형 터보프롭 항공기급에 적용할 수 있는 프로펠러에 대하여 공학설계를 하였으며 전산유체역학을 이용하여
용하여 성능을 검토하였다. 또한, 프로펠러 제작사가 공개한 유사 프로펠러 성능정보와 비교를 통해서 공력특성을 확인하였다. 본 연구에서는 성공 전산해석 프로그램의 다중모델(MRF, Multiple Reference Frame Method)과 미그램 격자(Sliding Mesh)과 무격자(Meshless Method)를 이용하여 설계된 프로펠러에 대한 공력해석을 수행하였다.

2. 본론

2.1 목표 프로펠러

본 연구에서는 ATR72-500 터보프롭 항공기에 장착되는 Hamilton Standard사의 568F 프로펠러의 성능을 목표로 하였 다. 568F 프로펠러 성능 해석은 Hamilton Standard사에서 제공한 프로펠러 성능해석 프로그램을 이용하여 해석하였다.

2.2 목표 프로펠러 설계조건

일반적인 항공기의 운항역량에서 순항영역이 가장 많이 차지하므로 본 연구에서의 프로펠러 설계조건은 17000마, 순항조건으로 설정하였다.[4] Table 2에서는 프로펠러 설계조건을 나타낸다.

<table>
<thead>
<tr>
<th>Table 2. Design Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter(m)</td>
</tr>
<tr>
<td>Spinner Diameter(m)</td>
</tr>
<tr>
<td>Rotation Speed(RPM)</td>
</tr>
<tr>
<td>Velocity(m/s)</td>
</tr>
<tr>
<td>Number of Blades</td>
</tr>
<tr>
<td>Power(kW)</td>
</tr>
</tbody>
</table>

2.3 프로펠러 공력설계

프로펠러 설계에 일반적으로 사용하는 엑히온으로는 RAF-6, Clark-Y, NACA-16 개체가 사용된다. RAF-6 엑히온은 높은 범위를 가지며 이복시 좋은 성능을 나타낸다. Clark-Y 엑히온은 적절한 범위와 낮은 최소한력을 가진다. NACA-16 개체 엑히온은 높은 속도를 가지는 항공기에 적합하며 공급되는 엑히온의 700HP 이하에서는 적절하지 않다. 최근의 프로펠러 개발업체들은 제작회사의 고유한 최적화된 우수한 프로펠러 엑히온들을 사용하여 효율이 가장히 향상된 프로펠러를 제작하고 있다. Fig. 2는 프로펠러에 적용되는 엑히온 단면 형태를 나타낸다.

Fig. 2 General Blade Airfoils

본 연구에서는 프로펠러에 사용되는 여러 엑히온 중 일반적인 Clark-Y 엑히온을 적용하였다.

프로펠러에 적용되는 엑히온 해석은 폐판기법과 적분형 경계

용 해석을 결합한 XFOIL을 이용하였다. XFOIL의 해상도용 모델은 가장 작은 Tollmien-Schlichting의 평균적 산업을 고려하는 엑히온을 통해 저레인보즈수 유동현상의 특성인 박

리기파의 이역학적능력을 포함하며 운동량을 증가할 경우에

여서 높은 유동 상태가 미뤄지는 난류 환경내의 지역을 고

려하는 엑히온을 포함한다. 성형램프 패널법을 이용하는 비정

성자유흐름과 경계층과 이역학적을 포함하는 점성유동을 뉴

론법에 의해 동시에 계산하므로 다른 정성수치기법에 비해

상당히 빠른 시간내에 해석이 이루어진다.

프로펠러 공력설계 및 해석에는 항공역량에 근거한

Adkins 등의 방법을 이용하였다. Adkins 등의 근거의

이론이 갖는 미소가 가정 및 경량 무게(light load) 가정 및 몇

가지 경계조건을 제거함으로써 최소에너지손실을 갖는 프로펠

러 설계기법 및 공력해석 기법의 결과가 정확히 일치하도록

하였으며, Betz가 제시한 최소에너지손실을 위한 조건은 운동량

력과 순환력을 갖는 설계조건이다. 설계조건에서 추간단계수

(α)는 변환속도비(η)에 의해 표현되며, 역설계기법에 의해

서 초기에 변환속도비가 가정되어 설계에서 변환속도비가 수

렴한 때까지 반복하여 휴류의 형상을 변하지 않고 잔차가 되

는 최소에너지손실을 위한 조건을 만족시키도록 설계한

다[2,3].

Fig. 3 Propeller Analysis Process

Fig. 3에서 보여주는 바와 같이 플레이드의 단면에 대한

기하학적 조건과 운동 동력, 최소순수, 지름, 자유중심의 속도를

입력값으로 각 단면에서 시험값과의 차이를 반복적으로 기반에

대상조건에 만족하는 프로펠러 성능 해석 및 형상 설계한

다.

2.4 프로펠러 설계결과 해석

Table 3은 설계조건 해석결과를 보여준다.
Table 3. Design Point Analysis

<table>
<thead>
<tr>
<th>Design</th>
<th>v/(nD)</th>
<th>Efficiency(%)</th>
<th>Thrust(N)</th>
<th>Power(kW)</th>
<th>β at 75%(°)</th>
<th>C_l</th>
<th>C_p</th>
<th>Pitch(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.19</td>
<td>89.8</td>
<td>10060</td>
<td>1590.5</td>
<td>49.8</td>
<td>0.21</td>
<td>0.50</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Fig. 4. 5는 설계된 프로펠러 형상 정보를 나타낸다. 프로
펄러 장단은 중심부보다 빠르게 회전하기 때문에 중심부의
피치각은 크고 꼬리부로 간수록 피치각이 줄어 들어 하여 추
력이 균형을 이루도록 구성되었음을 확인할 수 있다.

3. 수치해석 방법

3.1 수치해석 기법

3.1.1 유체해석

회전에 대한 해석 기법에는 SRF(Single Reference Frame),
MRF(Multiple Reference Frame), MPM(Mixing Plane Model),
SMM(Sliding Mesh Model), DMM(Dynamic Mesh Model) 등이
사용된다. 본 연구에서는 MRF(Multiple Reference Frame) 기법
과 SM(sliding mesh) 기법을 이용하여 수치해석을 하였다.
MRF 기법은 유동장을 회전영역과 비회전 영역으로 나눈 후,
회전 영역에 대해서 비판성 좌표계에서의 가장 힘을 운동량
방정식에 추가하여 계산하는 기법이다. 회전 좌표계와 비회전
좌표계 각각의 영역에 대해서 해석을 수행하고, 회전 좌표계
에서 계산된 속도에 플레이드의 회전속도를 더하여 합하는 방
식이다. 이 방법은 정상상태 해석이 가능하고 플레이드 형상
을 고려할 수 있으며 계산시간 대비 정확성의 관점에서 우수
하다. 상대운동을 하는 두 영역의 경계에서 유동특성은 일치
함 경우 매우 정확한 결과를 보여주는 것으로 알려져 있다.
MRF 기법은 비정상상태 해석 기법인 Mixing plane, sliding
mesh, Dynamic mesh보다 추가적인 source나 UDF를 사용하지
않으며, 계산시간이 적은 장점이 있다. MRF 기법을 통한 해
석 결과는 특성 시험에서의 유동으로 이해되어야 한다.

미그림 격자를(Sliding Mesh) 기법은 격자를 이용하여 회
전효과를 처리하는 기법이다. 미그림 격자는 서로 독립적
인 두 개 이상의 격자 공간이 상대속도를 가지고 이동하는
상황을 해석할 수 있어 정확한 비정상 상태의 해석이 가능하
다. 그러나 미그림 격자 기법은 격자생성 및 모델 설정에
MRF 기법보다 많은 노력과 시간이 필요하다. 미그림 격자
기법에서는 일정한 각도로 회전영역의 격자를 이동시키며
고정영역과의 경계에서는 보간을 통해 압력 및 유동장을 대
청시킨다.[4]

3.1.2 무격자법

본 연구에서는 유동의 지배방정식을 수치해법으로 끌어위
해 입자 운동학에 기초하여 수치해법으로 격자 불소만 방법
(Lattice Boltzmann Method)을 사용하여 fully Lagrangian 방정식
을 계산하는 무격자법을 이용하였다. 격자 불소만 방법은 입
자의 분포가 확률적으로 표현되고, 운동역학 특이 입자간의
운동학 이론(thermodynamics)를 통하여 입자 속도, 방향, 밀도와 같은
거시적 물리량과 입자의 분포함수의 연관성이 입자의 흐름
(streaming)과 충돌(collision)을 통하여 유동과 해석 해석
를 만들지 않고 해석을 수행할 수 있는 기법이다. 격자불소만
방법은, 역사적으로 LGA(Lattice Gas Automata)로부터 발전되
었으며, 불소만 방정식에서 직점 격자불소만 방정식(LBE)
이 유도됨으로써 이론적인 바탕이 세차계기 되었다. 한편 격자불
소만 기법에 입자들 간의 충돌을 생략자들 모형인 BGK
(Bhatnagar-Gross-Krook) 근사로 대체하고, Chapman-Enskog 가
정을 적용하여 이산화 방정식을 구하게 Navier-Stoke 방
정식으로 유도될 수 있다.

LGA(Lattice Gas Automata) schemes들은 가스모델의 형태를
볼는 가장 단순한 모델이다. 입자들이 d차원 격자네트에서 미리
결정된 방향으로 미리 결정된 시간 t=0, 1, 2....와 속도
c_i, i = 0, ..., b, 를 가지고 각각 이동한다는 개념이다. 가장
단순한 모델은 HPP(Hardy, Pomeau and de Pazzis)는 입자들이
2차원 사각 격자네트에서 4방향으로 이동하는 모델이다. 순간
시간 t에서 요소 격자의 상태는 occupation number n_i(r,t),
i = 0, ..., b로 주어진다. 여기서 n_i = 1은 i 방향 입자가
제 2 발 표 장 (27일 금)

선정된 백업이 적절한 영역을 사용하지 않고 본문 옷을 따르는 가상의 업자를 이용하여 유동을 해석하는 방법으로 선형적인 형태로 이루어진 방정식을 계산하기 때문에 기존의 전통적인 방점에 비해 알고리즘 측면에서 간단하다고 할 수 있다. Fig. 6,7은 수치해석 기법 중 FEM, FVM, ALE, 입자해석법 등을 사용한 해석결과를 보여 주며 해석결과의 정정에 대해서는 서로 비슷한 정정을 나타내지만, 실제 현상을 구현하는 측면에서는 입자해석 기법이 매우 실질적인 물리 현상을 나타내는 것으로 나타난다.[5-7]

\[n_i(r + c \Delta t, t + \Delta t) = n_i(r, t) + \Omega_i \]

\[\Omega_i \text{는 충돌판사자로 각각의 이전 상태 } (n_1, ..., n_b) \text{ 선형 모델링과 에너지, 질량을 유지하여 충돌 후의 상태 } (n_1', ..., n_b') \text{를 계산한다. } r \text{는 적자에서 위치를 나타내고 } c_i \text{는 속도를 나타낸다. 통계적 관점에서 시스템은 탈색된 시스템과 기적으로 동등한 큰 수의 요소들로 구성된다. 기속적인 백도와 선형모드드는 아래와 같이 나타낼 수 있다.} \]

\[\rho = \frac{1}{b} \sum_{i=1}^{b} n_i \] \hspace{1cm} (2)

\[\rho \nu = \frac{1}{b} \sum_{i=1}^{b} n_i c_i \] \hspace{1cm} (3)

Boltzmann의 수송방정식은 아래와 같이 표현된다.

\[f_i(r + c_i dt, t + dt) = f_i(r, t) + \Omega_i^B(f_1, ..., f_b) \] \hspace{1cm} (4)

\[f_i \text{는 i 방향과 중돌 연산자 } \Omega_i^B \text{의 연립방정식이다.} \]

식(7)과 Chapman-Enskog expansion을 이용하여 압축성 Navier-Stokes 방정식을 통해하였다. 또한, BGK 근사에 의해 연산자의 아래와 같이 규정된다.

\[\Omega_i^{BGK} = \frac{1}{\tau} (f_i^\infty - f_i) \] \hspace{1cm} (5)

여기서 \(f_i^\infty \)는 국부평형 함수이며, \(\tau \)는 이완 특성 시간 (relaxation characteristic time) 이며 아래와 같이 macroscopic viscosity와 연관된다.

\[\nu = c_i^2 \left(\tau - \frac{1}{2} \right) \] \hspace{1cm} (6)

\(c_i \text{는 음속을 의미한다. positive viscosity를 위해서 이완시간은 0.5보다 적어야 한다. 일반적으로 평형 분포 함수는 아래와 같이 표현된다.} \]

\[f_i^\infty(r, t) = \tau_i \rho \left(1 + \frac{c_{i} \nu_{\alpha}}{c_{\alpha}^2} + \frac{\nu_{\alpha} \nu_{\beta}}{2c_{\alpha}^2} \left(\frac{c_{i} c_{\alpha} \delta_{ij}}{c_{\alpha}^2} - \delta_{ij} \right) \right) \] \hspace{1cm} (7)

격자불안의 방점을 기준의 연속체 개념을 사용하되 공기 운동을 따르는 가상의 입자를 이용하여 유동을 해석하는 방법으로 선형적인 형태로 이루어진 방정식을 계산하기 때문에 기존의 전통적인 방점에 비해 알고리즘 측면에서 간단하다고 할 수 있다. Fig. 6.7은 수치해석 기법 중 FEM, FVM, ALE, 입자해석법 등을 사용한 해석결과를 보여 주며 해석결과의 정정에 대해서는 서로 비슷한 정정을 나타내지만, 실제 현상을 구현하는 측면에서는 입자해석 기법이 매우 실질적인 물리 현상을 나타내는 것으로 나타난다.[5-7]
Fig. 8 Propeller with long hub

본 해석에는 다단계 기법 및 미끄럼 격자법을 이용한 CFD 코드인 Fluent 12.0.16을 사용하였으며 무각지역 해석에는 XFLOW을 이용하였다. 다단계 기법에서 비압축성 RANS(Reynolds-averaged Navier-Stokes) 해석과 k-ω SST 모델을 사용하여 단순한 정성을 계산하였다. 유동 지배 방정식은 상류경계방정식을 적용하여 공간차분을 하였으며, 속도 입력 단계에 대한 scheme은 음속방정식과 운동량 방정식, species transport를 하나의 set of equation으로 묶는 coupled를 사용하였다. 시간 적분으로는 내적적 시간 적분 기법을 이용하였으며, 압력형은 2nd Order 방법인 DynaForm 하였다. 운동량, turbulent kinetic energy와 turbulent dissipation rate에 대해서는 2nd order upwind 방법인 DynaForm 하였다.

Fig. 9 Mesh for Flow Analysis

Fig. 10 Blade Surface Mesh

경계조건은 입구는 속도조건을 축구하는 대기압조건으로 설정하였으며, 외부면은 periodic 조건과 free-slip wall 조건을 적용하였다. 프로펠러 주위의 영역은 actuator disc로 가정하여 다단계 기법을 적용하여 해석 후 수렴된 결과 값은 미끄럼 격자 기법의 초기 입력값으로 적용하여 해석하였다. 비정상 해석을 위해 프로펠러는 6회 회전하였으며, 이것 때문에의 주된 결과로부터 공력특성을 분석하였다. 각자는 8매단의 개의 Hybrid grid로 구성하였으며 프로펠러 블레이드 표면의 y+가 1 이하가 되도록 구성하였다. Fig. 9, 10은 유동해석 격자를 나타낸다.

무각지역 해석을 XFLOW을 사용하는데 있어, 프로펠러 주위에는 조밀하게 밀려진 유동장 영역에는 상관 없을지 마치하여 수치계산을 수행하였다. 프로펠러 주위에는 조밀한 격자를 배치하기 위해 Refinement Algorithm으로 adapt to walls and dynamically adapt to wake model을 사용하여 빡았던 근처에 입자를 조밀하게 구성하였고, 외부가 발생하는 유동영역에도 와류를 따라 조밀한 격자를 사용할 수 있도록 하였다. 적용하는 입자수가 많으면수록 보다 정확한 결과를 구할 수 있으나 과다한 시간비용이 소요된다. 본 연구에서는 해석에 적용하기 위한 입자수에 대하여 trade off 해석을 통해 약 5백만개 정도의 입자를 적용하였다. 이때 해석 결과의 향상을 위해 Courant Number는 0.1을 적용하였다. 적절한 사이즈의 Courant Number를 사용하는 것은 일반적으로 사용한 계산 정보를 나 음 단계에서 활용하는 Unsteady Solver의 특성상 Steady Solver에서 각각 수의 적절한 범위에 따라 해의 정밀도에 영향을 미치는 것 같이 중요한 요소가 된다.

4. 수치해석 결과

4.1 프로펠러 유동 해석 결과

히브 육 정성이 적용된 프로펠러에 대한 해석을 수행하였다. 설계속도 전진속도 142m/s와 프로펠러 회전속도는 980 RPM 영역에 대한 공력 특성을 구하였다. Fig. 11은 프로펠러 블레이드 표면의 y+ 분포를 나타내며 1이하로 구성된 것을 알 수 있다.

Fig. 11 Blade surface Y+ Distribution(left: Suction, Right: Pressure)

Fig. 12 Vorticity Distribution
Fig. 12는 프로펠러 후류 vorticity 특성을 보여준다. 프로펠러 끝단에서 발생하는 외류는 회전하는 프로펠러에서 생성되는 순환과 연관되어 있으며, 이러한 외류를 발생하는 것을 볼 수 있다. 또한, 프로펠러 허브부의 접촉은 외류를 형성할 수 있으며, 허브 끝단에서 유동의 방향을 인한 외류가 발생하는 것을 알 수 있다.

4.2 성능 비교 결과
Table. 4에서는 전진비 2.19에서의 설계점 해석결과, 568F 프로펠러 DECK, 수지해석 결과 값을 보여주고 있다.

Table 4. Results of Design Point Analysis

<table>
<thead>
<tr>
<th></th>
<th>DECK</th>
<th>Design</th>
<th>CPD</th>
<th>LBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency(%)</td>
<td>86.6</td>
<td>89.8</td>
<td>88.7</td>
<td>88.9</td>
</tr>
<tr>
<td>Thrust(N)</td>
<td>9750</td>
<td>10061</td>
<td>10775</td>
<td>10589</td>
</tr>
<tr>
<td>Power(kW)</td>
<td>1579</td>
<td>1590.5</td>
<td>1699.9</td>
<td>1668.4</td>
</tr>
<tr>
<td>β at 75%(*)</td>
<td>47.2</td>
<td>49.8</td>
<td>49.8</td>
<td>49.8</td>
</tr>
<tr>
<td>Cx</td>
<td>0.23</td>
<td>0.21</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>Cp</td>
<td>0.39</td>
<td>0.50</td>
<td>0.56</td>
<td>0.55</td>
</tr>
</tbody>
</table>

본 연구의 설계점 해석결과와 568F 프로펠러 DECK 비교시 설계값과 더 높게 나타나고 있다. J.A.Lieser의 연구에서 blunt 타입의 블레이드 tip 형태가 sweep 영향보다 다소 높은 추력을 발생하는 것을 알 수 있지만 tip 근처에서 급격하게 추력이 감소되는 것을 보여준다. 본 연구에서 설계된 프로펠러의 블레이드 끝단이 blunt 형태가 유사하여 소용 서감을 위해 Tip 형상에 sweep angle가 적용된 568F 프로펠러보다 추력은 높게 나타나지만 소음 측면에서는 다소 높리 할 것으로 판단된다.

수치 해석결과와 설계프로필의 성능 결과 비교하였을 때 수치해석결과의 추력과 요구동력이 다소 높게 나오는 것을 알 수 있다. 이러한 차이는 설계된 프로필의 경우 3차원 허브형성을 고려하지 않은 상태로 공력설계를 했으므로 Fig. 12에서 나타난 바와 같이 blunt tip 형성이 외부 공력특성에 영향을 받아 추력이 높게 되었을 것으로 판단된다. 단순 허브단을 적용한 Isolated 프로필의 경우 3차원 허브부에서 발생한 외류가 프로필에 영향을 미치는 영향을 더욱 높게 발생한다는 결과가 나타났다. 이와 같은 현상은 방지하기 위해 long 허브가 적용된 본 모델의 경우 허브에 의해 야기되는 disturbance potential wake로 인해 프로필의 추력과 요구동력이 높게 나오는 원인으로 판단된다. 전산해석 역학을 이용한 수지해석결과와 LBM을 이용한 수지해석 결과 유사한 결과 값을 확인 할 수 있다.

5. 결론
본 연구에서는 중형 터보프로펠 항공기에서 적용할 수 있는 프로펠러에 대해 공력설계를 통하여 형상을 생성하였으며 수치해석기술을 이용하여 설계된 프로필의 공력특성을 검토하였다. 프로필의 블레이드 끝단이 blunt 형성과 유사하여 소음 서감을 위해 Tip 형상에 sweep angle가 적용된 568F 프로펠러보다 추력효율은 높게 나타나지만 소음 측면에서는 다소 높게 할 것으로 판단된다. 허브 형상이 적용된 프로펠러 형상으로 인해 수지해석 결과가 설계된 프로필보다 허브에 의해 야기되어 있는 disturbance potential wake로 인해 다소 높은 추력과 동적응력이 나타내는 것을 알 수 있다. 전산해석결과와 LBM 해석결과는 유사한 값을 나타내는 것을 알 수 있다. 설계된 프로필의 공력특성 분석을 통하여 중형 터보프로펠 항공기제에 적용 가능성을 확인하였으며, 수지 해석을 고려한 최적 프로필 형상에 대해 연구할 예정이다.

후 기
이 연구는 한국과학기술연구회에서 슈퍼컴퓨팅최종연구 선정지원프로그램을 통해 수행되었다.

참고문헌