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1. Introduction 
 

1.1 Examples of anisotropy in rocks 
 

Rocks have anisotropy in the scale from a centimeter for rock matrix, to a few tens of meter for 
construction scale, to a geological rock mass scale, and to the crustal scale.  And it is not so rare that the 
anisotropy ratio is so large as more than 2.  Anisotropy comes from the structure of rock and is exhibited 
in strength, deformability, elastic wave velocity, permeability, etc.   

In the scale of laboratory specimen, mineral arrangement in sedimentary rocks and microcrack 
alignment in crystalline rocks can sometimes cause anisotropy ratio of more than 2 in elasticity1).   

In the scale of construction such as tunnel or cavern, layered rocks and/or rock with concentrated joint 
distribution can have large anisotropy.  For example, plate jack tests at a layered rock site in Japan 
showed 1.5 times larger Young’s modulus in the direction parallel to the bedding plane than in the 
direction normal to it2).  For a dam site in Portugal, anisotropy ratio of about 3 in elasticity is reported3).   

In the scale of the crust, its anisotropy has been detected through seismic wave analysis all over the 
world including the Antarctic.  It has been observed mainly through the polarization of S wave.  The 
velocity difference of Sv and Sh are reported to be 2% to 10%.  The mantle below the crust is also 
reported4) to have anisotropy to the depth of at least 300km.  A measurement at Hyogo, Japan has shown 
11% polarization of S wave5) in the depth range of 6 to 8 km. 

 
1.2 Necessity of anisotropy evaluation 

 
It has been pointed out for example in the field of theory of elasticity that assuming isotropy for an 

anisotropic material can cause large error6)7).  For this reason, the importance of anisotropy in geo-
engineering issues has been stressed8) so far, but in practical engineering anisotropy determination in the 
scale of in-situ rock test is rare.  One of the reasons for this might be that there is no practical method, 
because of too many anisotropy parameters and because of variation of properties in space.  And maybe 
because in the past 3 dimensional evaluation of anisotropy was not needed, simple 2D evaluation was 
good enough for 2D analysis of tunnel or cavern.  But in this age of computer evolution, 3D analysis is 
beginning to be required for more rational design.  For the 3D analysis, 3D anisotropy is needed to be 
determined.   

One of the urgent issues of this modern world depending on nuclear energy is the construction of 
underground disposal facility of nuclear waste.  To this underground facility, not only the function of 
keeping the cavern space but also the barrier function against radioactive nuclide transportation for very 
long time duration are required.  Therefore, rock characterization and rock evaluation should be more 
rigorous than for conventional underground construction.  Especially the near-field rock around the 
deposition hole which contains HLW canister with bentonite buffer needs to be investigated in detail 
because the near-field rock and bentonite interact with each other and can have some effects on barrier 
function against the nuclide transportation.  If anisotropy exists, it should be evaluated in detail.   

 
1.3 The targets of the development 

 
Anisotropy can exist in different scales as stated in 1.1.  When we are to evaluate the near-field rock 
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around the HLW deposition hole, the scale of the test should be similar to the scale of the deposition hole.  
The centimeter scale for laboratory test would be too small and ten meter scale for cross hole seismic 
testing would be too large.  The scale of plate jack testing for example would be good for the evaluation 
of rock around the deposition hole.   

As we experience in in-situ rock tests such as rock shear test and plate jack test, even within a same 
geological and geo-technical categorization, rock properties can change considerably from place to place.  
Since there are more than a few parameters to be determined for anisotropy, some plural tests may usually 
be required to determine a set of anisotropy.  In such a case the variation of properties from place to 
place can hinder and distort the anisotropy determination.  It would very much be preferred to have a 
method which requires one specimen to determine a set of anisotropy.   

Another point of consideration would be that the method be whether seismic test or loading test.  
Since the anisotropy around the deposition hole would mainly be taken into account in the evaluation of 
mechanical interaction with bentonite under the in-situ stress condition, the loading test would be much 
better.  And to avoid uneven and/or eccentric loading, pressurization using a jacket would be preferable 
than loading via platen.   

And at last, the method wants to be able to treat 3 dimensional orthogonal anisotropy, which would be 
good enough for geo-engineering, rather than only layered body or transverse isotropy.  Further, the 
method wants to be valid even if the directions of anisotropy axes are unknown.   

This paper describes the methodology of the developed method of determining anisotropy which can 
meet the above-mentioned targets.   

 
 

2. Plan of the development 
 

2.1 Mode of testing 
 

In principle, there can be various types of testing for determining anisotropy, such as seismic velocity 
tests using cores in directions more than a few9), axial loading tests using cores in plural directions, in-situ 
plate jack tests in plural directions, etc.  Oka and Hirashima10) have made a theoretical study to determine 
2D orthogonal anisotropy by plate jack test and by tunnel pressure test.   

In this paper, as shown in 1.3 as the targets of the development, a method which uses a relatively large 
rock sample and can determine a set of anisotropy using a single specimen by pressurization test is 
considered.  For this purpose hollow cylinder is considered.  The concept of the mode of testing is 
shown in Fig.1.  The response of displacement measured in the center hole of the cylinder when its outer 
surface is pressurized will be used for the anisotropy determination.  Both ends of the cylinder will be 
capped and the entire cylinder be jacketed for the pressurization. 

 
The principle of setting pressure level will follow that of in-situ tests such as plate jack test.  The 

pressure level will be roughly similar to the in-situ stress level because we want to know the rock 
deformation characteristics at such stress level.  About the size of the cylinder, diameter 20 cm and 
length about 1 m would be easily possible because such cylinder has been already used many times for 
overcoring stress measurement in Japan.   
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Fig.1  Concept of testing  
 

2.2 Procedure of the development 
 

To determine anisotropy from the deformation response to pressurization, one of probable procedures 
would consist of the following. 
(1) Realizing forward analysis of determining the deformation of the center hole of the anisotropic 

cylinder subjected to pressurization, 
(2) Reducing the number of independent parameters of anisotropy with little sacrifices, if possible.  

This is important because one of the reasons that anisotropy is not usually measured in practical 
geo-engineering is that determining parameters of more than a few is too difficult.  If the 
number of parameters can be reasonably reduced, it means a lot.   

(3) Formulating back analysis to determine anisotropy from the measured deformation of the inner 
hole, and also confirming stability of the back analysis.  Generally speaking, back analysis 
does not always give correct answer but can give some false answers.  Stability of a back 
analysis is necessary to obtain a correct anisotropy.   

 
     In the following sections, above-mentioned 3 items are discussed. 

 
 

3. Solution of center hole deformation of an anisotropic cylinder 
 

3.1 Policy to obtain the solution 
 

Setting aside folding, anisotropy of rocks is on orthogonal coordinates.  The present problem is to find 
a solution of center hole deformation of a hollow cylinder sampled out in arbitrary direction from such 
anisotropic rock.  Since theoretical solution was not found in literature, the author has tried to make a 
simple solution which is good enough for present purpose.  FEM is good only for forward analysis but it 
does not suffice for backward analysis because backward analysis requires huge numbers of iterating 
forward analysis and therefore FEM is not practical for present purpose.   

Fig.2 is the flowchart of steps to obtain a simple solution.  First, many anisotropy cases are generated 
including the consideration of directions of anisotropy, and the center hole deformation of a hollow 
cylinder is determined by 3D FEM analysis.  Second, hole deformation of an infinite body of the same 
anisotropy is determined using Amadei's theoretical solution6).  Then thirdly, the deformation of the 
hollow cylinder is expressed as the product of coefficient and deformation of a hole in the infinite body.  
Then fourthly, the coefficient is evaluated as a function of anisotropy parameters.   

End capping 

Displacement 
sensor 

Pressurization by
liquid 
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Fig.2  Steps to obtain simple solution of center hole deformation of a hollow cylinder  
 

3.2 FEM analysis 
 

3.2.1 FEM model and discretization error 
The ratio between center hole diameter and outer diameter is set to be 1/4.  This ratio is adopted for an 

overcoring method for stress measurement in Japan.  The FEM code ABAQUS has been used.  3D 
model of a hollow cylinder with the height 2.5 times the outer diameter has been established and the 
deformation has been evaluated at the central height.  A quarter region of the transverse section is shown 
in Fig.3.  The size of element in radial direction has been determined considering the stress distribution 
around the hole.  The total number of elements is 144,000.  The difference between the deformation in 
this FEM model and theoretical deformation in the case of isotropy is less than 0.02%.  The 
discretization error in this FEM model is thought to be negligible.   

 
3.2.2 Anisotropy cases 

The number of anisotropy is 17 disregarding the coordinate transformation.  The parameters of each 
case are shown in Table 1.  In the table, Cij is an element of elasticity matrix.  By coordinate 
transformation, 588(=7*7*12) cases for each basic anisotropy, and 9996(=588*17) cases in total have 
been generated.  The increment of transformation rotation angle is 30 degrees for x and y and 15 for z.   

The parameters in Table 1 have been determined as follows.  When an isotropic elastic medium 
contains penny shaped micro cracks, the resultant bulk elasticity can be theoretically calculated by 
Hudson’s formulation 1 1 ) .  Density, type whether hollow or shear of micro cracks in 3 orthogonal 
directions, and poisson’s ratio of the matrix have been changed to obtain the 17 basic anisotropies shown 
in Table 1.  Density of micro crack is N cr

3/V where N is the number of micro crack in the volume V and 
cr is the radius of the penny shaped micro crack.  Between the both surfaces of a micro crack, there is no 
force for hollow type and only normal force for shear type.   

As shown in Table 1, the maximum ratio of anisotropy is 2.08 for normal elasticity and 2.18 for shear 
elasticity.   

As a more general anisotropy than orthogonal, triclinic anisotropy is generated for the later verification 
of the solution we are going to obtain, together with two cases of transverse isotropy.   

 

Deformation of hollow cylinder 
                uH          (FEM) 

Deformation of hole in infinity 
                 u∞       (theoretical) 

Evaluate coefficient B  
uH = B u∞ 

Evaluate B as a function of Cij  

B = f(Cij) 

Simple solution     uH = f(Cij) u
∞ 
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Fig.3  FEM mesh model  
 

Table 1.  Elastic parameters for anisotropic cases 
  (17 orthogonal, 2 transverse isotropy and 1 triclinic cases) 

 
3.2.3 External pressurization and evaluation of deformation 

In the FEM analysis, unit pressure has been applied only on the lateral surface of the cylinder.  The 
deformation for the axial loading can simply be obtained without executing FEM analysis.  In this way, 
we will be able to handle the lateral surface pressurization and axial pressurization independently when 
necessary.   

Fig.4 shows an example of deformation of a hollow cylinder subjected to pressurization on the lateral 
surface.  The both ends are parallelly undulating.   

Based on the FEM analysis, the displacement in r direction at the point (ra, 0, 0) is normalized by the 
radius ra and expressed as ur

H.  Also the displacement in z direction at the same point is normalized and 
expressed as uz

H.  Further, strain in z direction εz
H at the same point is evaluated.  The solutions for other 

points which are the rotation around z axis is obtained from the solution at (ra, 0, 0) for other anisotropies 
obtained by rotation of the anisotropy around z axis.  In this way the deformation of the center hole is 
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C11 C22 C33 C44 C55 C66 C23 C31 C12
normal
 ratio

shear
ratio

 OR 1 1.201 0.985 0.770 0.233 0.283 0.334 0.238 0.302 0.367 1.559 1.436
 OR 2 1.346 1.346 1.346 0.233 0.283 0.334 0.577 0.577 0.577 1.000 1.436
 OR 3 1.136 0.777 0.562 0.165 0.249 0.300 0.087 0.195 0.259 2.022 1.819
 OR 4 1.346 1.346 1.346 0.165 0.249 0.300 0.577 0.577 0.577 1.000 1.819
 OR 5 1.322 1.286 1.250 0.359 0.368 0.376 0.520 0.531 0.542 1.057 1.047
 OR 6 1.346 1.346 1.346 0.359 0.368 0.376 0.577 0.577 0.577 1.000 1.047
 OR 7 1.017 0.853 0.689 0.248 0.317 0.386 0.058 0.075 0.091 1.475 1.556
 OR 8 1.023 1.023 1.023 0.248 0.317 0.386 0.114 0.114 0.114 1.000 1.556
 OR 9 1.014 0.741 0.578 0.156 0.271 0.340 0.034 0.061 0.078 1.756 2.178
 OR 10 1.023 1.023 1.023 0.156 0.271 0.340 0.114 0.114 0.114 1.000 2.178
 OR 11 1.022 0.994 0.967 0.420 0.432 0.443 0.104 0.107 0.110 1.056 1.055
 OR 12 1.023 1.023 1.023 0.420 0.432 0.443 0.114 0.114 0.114 1.000 1.055
 OR 13 1.320 0.977 0.634 0.229 0.271 0.314 0.194 0.331 0.469 2.081 1.375
 OR 14 2.143 2.143 2.143 0.229 0.271 0.314 1.429 1.429 1.429 1.000 1.375
 OR 15 2.143 2.143 2.143 0.171 0.243 0.286 1.429 1.429 1.429 1.000 1.667
 OR 16 2.006 1.949 1.891 0.336 0.343 0.350 1.223 1.246 1.269 1.060 1.043
 OR 17 2.143 2.143 2.143 0.336 0.343 0.350 1.429 1.429 1.429 1.000 1.043
 TV 1 1.217 1.217 0.643 0.249 0.249 0.385 0.275 0.275 0.448 1.894 1.542
 TV 2 1.510 1.510 1.179 0.303 0.303 0.509 0.465 0.465 0.491 1.280 1.681

1.201 0.367 0.302 -0.065 0.000 0.000
0.367 0.927 0.296 -0.108 0.000 0.000

 TR [Cij] ＝ 0.302 0.296 0.712 -0.108 0.000 0.000
-0.065 -0.108 -0.108 0.291 0.000 0.000
0.000 0.000 0.000 0.000 0.283 -0.051
0.000 0.000 0.000 0.000 -0.051 0.334
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expressed by ur
H, uz

H and εz
H .  Using these three parameters, the displacement between any 2 points on 

the surface of center hole can be obtained when the 2 point is point symmetric regarding a point on the 
axis of the cylinder.   

 
Fig.4  An example of deformation of a hollow cylinder subjected to pressurization on the outer lateral 

surface.  (Dash line shows the shape before pressurization.) 
 

3.3 Finding a function of the solution by regression 
 

The ratio between the normalized displacements ur
H and uz

H and strain εz
H at the point (ra, 0, 0) for the 

hollow cylinder and those for the hole in infinite body, for each of 9996 cases of orthogonal anisotropy, 
have been calculated to be denoted as Br, Bz and Bez.  The far field stress for the hole in infinite body is 
set as σx= σy= 1, σz= τxy= τyz= τzx= 0 corresponding to the unit pressurization on the outer lateral 
pressurization on the hollow cylinder.  The normalized displacements ur

∞ and uz
∞ and strain εz

∞ at the 
point (ra, 0, 0) for the hole in infinite body can be obtained according to Amadei6). 

 
ur

H = Br ur
∞ 

uz
H = Bz uz

∞ 

εz
H = Bez εz

∞              (1) 
 
The coefficients Br, Bz and Bez are functions only of anisotropic elastic parameters Cij, because the 

ratio between the internal and outer diameters is fixed to 1/4 as stated in section 3.2.   
 
Br = fnr(Cij) 
Bz = fnz(Cij) 
Bez = fnez(Cij)              (2) 
 
Several model functions were set for each of Br, Bz and Bez and the result of regression analysis were 

compared.  As a result, the following functions have been found to be the best.  
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      i ≤ j , k ≤ l , i ≤ k. 
      when i = k,  j ≤ l. 
 
aij is the element of compliance matrix which is the inverse of elasticity matrix [Cij]. And br

ijkl, bz
ijkl 
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and bez
ijkl are coefficients determined by regression analysis, with 231 elements respectively.  These 

regression functions have maximum error of 0.8% of ur
H for all anisotropy cases of 9996, and thus these 

functions in (1) are good solution of deformation of the center hole of the anisotropic hollow cylinder.    
 

3.4 Verification of the solution 
 

To verify the solution obtained in section 3.3, three basic anisotropies which have not been used in the 
regression analysis to determine the solution, have been set as shown in Table 1.  Two are transverse 
isotropy and one is triclinic anisotropy.  Triclinic anisotropy is the most general anisotropy with 21 
independent parameters and three anisotropic axes are not orthogonal to each other any more.  One of the 
two transverse isotropy has been established based on Hudson’s elasticity model11) with a micro crack 
system aligned at one direction.  Another one has been established as a layered medium based on 
Salamon12) (Table 2).  Φj in the table is the ratio of the jth layer’s thickness.  E, ν and G are the elastic 
parameters in the isotropic plane and E’, ν’ and G’ are the parameters outside of the isotropic plane.   

 
Table 2.  Macroscopic parameters of transverse isotropy for layer structure of different isotropic media. 

      (Salamon, 1968)12) 

 
 

For the anisotropy cases of 1764 (7*7*12 *3) obtained by the rotation transformation of the three basic 
anisotropies, the hole deformation ur

H, uz
H and strain εz

H obtained from the solution, eq.(1), and those 
from FEM analysis have been compared.  An example of graphical comparison is shown in Fig.5, for ur

H 
in the case of triclinic anisotropy.  The vertical axis is for the normalized displacement ur

H.  The 
horizontal axis is for 588 cases generated by rotation transformation of the triclinic.  The plots are for the 
simple solution of eq.(1), and the line is for the FEM results.  Not only ur

H but also uz
H and εz

H have been 
found to be agreeing with the FEM results.  Also, this agreement has been found in the two cases of 
transverse isotropy.  Thus eq.(1) has been found to be a good enough solution of center hole deformation 
of a hollow cylinder of general anisotropy.  Note that the error in the deformation of isotropic thick 
hollow cylinder has been 0.6% between the theoretical solution and eq.(1).   

 

Fig.5  An example of comparison between deformation by FEM and the simple solution. 

     Horizontal axis is for 588 cases of rotation-transformed triclinic anisotropy.   

(solid line for FEM,  square dots for the simple solution) 
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3.5 Conclusion about the solution 
 

From the results of regression analysis in section 3.3 and verification in 3.4, the obtained simple 
solution eq.(1) of the center hole deformation of a hollow cylinder has been found to be accurate enough 
for transverse isotropy, orthogonal anisotropy and triclinic anisotropy with maximum stiffness ratio of up 
to about 2.  This solution is simple and easy to use for back analysis which will require huge number of 
iterative calculations.   

 
 

4. Reducing the number of independent parameters of orthogonal 
anisotropy 

 
4.1 Policy to reduce the number 

 
When we adopt anisotropy instead of isotropy for the purpose of describing the behaviour of geo-

material, we then meet the obstacle of many parameters.  The very simple anisotropy of transverse 
isotropy for example have 5 independent parameters.  More practical anisotropy of orthogonal have 9 
independent parameters.  When the directions of anisotropic axes are unknown, 3 additional independent 
parameters have to be determined.   

The difficulty and complication arising from the above-mentioned problem is one of the reasons that in 
practical geo-engineering the evaluation of anisotropy has been prone to be avoided.  And even when 
anisotropy is to be evaluated, some restrictions may be required, for example, transverse isotropy may be 
adopted for a rock with clear evidence of orthogonal anisotropy as a compromise.   

In this chapter, a mean to describe orthogonal anisotropy as accurate as possible with a number of 
independent parameters as less as possible is sought.  . 

The number of independent parameters 5 for transverse isotropy and 9 for orthogonal anisotropy for 
example are deduced from mathematical consideration of symmetry.  Geo-materials such as soil and 
rock are composite of mineral particles, layered body and/or micro cracked body.  Therefore there may 
exist a further restrictions coming from the micro-structural features on the anisotropic parameters.   

Therefore, possible relationships between independent anisotropic parameters have been studied for 
layered body and micro-cracked body through numerical calculation.  The anisotropy cases used for this 
study are shown in Table 3.  If we find some relationships, then we can reduce the number of 
independent parameters based on them.  The relationships will be verified by the previous measurements 
of anisotropy of soil and rock. 

 
 

Table 3.  Cases of anisotropic bodies used for consideration of reducing number of independent 

parameters. 

 
 

Orthogonal anisotropy is considered for the present purpose.  9 independent parameters C11, C22, C33, 
C44, C55, C66, C12, C23 and C31 are rearranged using new parameters kg1, kg2, kg3, kv12, kv23 and kv13 as 
follows. 

Case (1):  repetition of 2 kinds of layers  
Case (2):  repetition of 3 kinds of layers  
Case (3):  penny cracks in one direction 
Case (4):  penny cracks normal randomly aligned in a plane 
Case (5):  penny cracks normal randomly aligned with an angle from 

the plane 
Case (6):  penny cracks aligned in 3 orthogonal directions 
Case (7):  combination of Case 3 and Case 5 
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kg1≡C44/(C22+C33) , kg2≡C55/(C33+C11) 
kg3≡C66/(C11+C22) 
kv12≡C12/(C11+C22) , kv13≡C13/(C11+C33) 
kv23≡C23/(C22+C33)                               (4) 
 
Further, kgm and kvm are introduced. 
kgm≡ (kg1+ kg2+ kg3)/3  
kvm≡ (kv12+ kv23+ kv13)/3                    (5) 

 
4.2 Anisotropy for micro-cracked body 

 
As stated in section 3.2.2, macroscopic anisotropy of micro-cracked body can be determined according 

to Hudson11).  The cases generated are shown as (3), (4), (5), (6) and (7) in Table 3.  (3) is the case of 
aligned micro-cracks only in one direction, (4) is for micro-cracks aligned randomly in a plane, (5) is 
similar to (4) but the normal of each micro-crack is out of the plane at an angle, (6) is for three micro-
crack systems aligned orthogonally, and (7) is a combination of (3) and (5).   

Table 4 shows, as an example, parameters for orthogonal case (6), namely, crack density, crack type 
(hollow or shear), poisson’s ratio of matrix.  Among all individual anisotropies in case (6), the maximum 
of anisotropic ratio for normal elasticity has been 1.5 and 1.4 for shear elasticity.  Fig.6 shows 
relationships among kg1, kg2, kg3, kv12, kv23, kv13, kgm and kvm.  The following rough relationships are 
observed in the figure.   

 
kg1 ≈ kg2 ≈ kg3 ≈ kgm 
kv12 ≈ kv23 ≈ kv13 ≈ kvm 
kvm ≈ 1/2 − 2 kgm               (6) 
 
These relationships have been found also in all other cases of micro-cracked body (3) to (7) in Table 3.   

 
Table 4.  Parameters to constitute orthogonal micro crack system (case 6). 

 
4.3 Anisotropy for layered body 

 
Macroscopic anisotropy of layered medium are obtained according to Salamon12) as stated in section 

3.4.  Cases (1) and (2) in Table 3 are for the layered bodies, namely repetition of bedding of two kinds of 
layers and three kinds of layers respectively.  Table 5 shows as an example Young’s modulus, poisson’s 
ratio, thickness ratio of each layer for case (1).  Among all the anisotropies for the case (1), the maximum 
of anisotropic ratio for normal elasticity has been 1.8 and 1.9 for shear.  Fig.7 shows the relationships 
among the parameters kg1 to kvm.  From the figure, the rough relationships observed in the micro-cracked 
body as eq.(6) have also been found to be valid for the layered body.  These relationships have also been 
found for the case (2) in Table 3.   

 
4.4 Measured anisotropy of rocks and sands. 

 
The anisotropy of some rocks and sands has been measured based on elastic wave or loading tests.  In 

Crack density Crack type poisson ration
1st crack system 0, 0.001, 0.01, 0.04
2nd crack system 0, 0.001, 0.01, 0.04 0.1, 0.2, 0.3, 0.4
3rd crack system 0, 0.001, 0.01, 0.04

maximum ratio of anisotropy for normal elasticity 1.48
maximum ratio of anisotropy for shear elasticity 1.34

Empty crack
Shear crack
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these tests, most cases have been assumed to be transversely isotropy and a few to be orthogonal.  Fig.8 
shows the relationships among the parameters kg1 to kvm.  The samples and references are also listed in 
Table 6.  As shown in the figure, the rough relationships of eq.(6) observed theoretically for layered and 
micro-cracked body are verified by the actual data.   

 
4.5 Conclusion about reducing the number of parameters 

 
A method has been devised to reduce the number of independent parameters of orthogonal anisotropy 

with minimal sacrifices.  First, since the cause of anisotropy of rocks are considered to be structural 
reason such as layer and/or cracks and joints, theoretical calculations of macroscopic anisotropy have 
been done for layered and micro-cracked bodies.  As the result, it has been found that these structural 
features pose some restrictions on the 9 independent parameters of orthogonal anisotropy.  Eqs.(6) are 
the rough relationships or restrictions on the parameters.  The relationships have been verified by actual 
data from previous papers.  As a result, the following 4 parameters are deduced to be good enough for 
practical geo-engineering.  Namely, C11, C22, C33 and kgm.   

When we are to characterize a rock to be orthogonal for engineering purpose, only 4 independent 
parameters will be needed and the elasticity matrix is expressed as in Table 7.  kg and kv in the table are 
defined as follows. 

 
kg ≡ (kg1+ kg2+ kg3)/3  
kv ≡1/2 − 2 kg                              (7) 
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Fig.6 Relationships among elastic parameters. 

     (case 6.  Orthogonal micro crack system) 
 

Table 5.  Parameters to constitute 2-layer body (case 1). 
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2nd layer 10,20,40 0.1, 0.275, 0.45 (0.8, 0.5, 0.2)

maximum ratio of anisotropy for normal elastic 1.79
maximum ratio of anisotropy for shear elasticity 1.87
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Fig.7 Relationships among elastic parameters. 

     (case 1.  2-layer body) 
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Fig.8 Relationships among elastic parameters. 

     (measured data for rock and sand, see Table 6) 
 
 

5. Formulating back analysis to determine anisotropy 
 

5.1 Premises about testing 
 

The rock sample we are going to test for determining anisotropy is a hollow cylinder.  A number of 
displacement censors are installed in the center hole.  The both ends of the cylinder are capped, the entire 
cylinder is jacketed and the specimen is hydrostatically pressurized to a level roughly similar to the in-situ 
stress.  The ratio between internal and external diameters of the cylinder is 1/4.  The ratio is the 
restriction coming from the usage of the simple solution discussed in chapter 3 and especially in 3.2.1.  
The number of the displacement sensors need to be more than the number of unknown parameters of the 
anisotropy.  When the directions of the anisotropic axes are unknown, there are in all 7 unknown 
parameters for the simplified orthogonal anisotropy, C11, C22, C33, kgm, θ1, θ2 and θ3.  Since a overcoring 
stress measurement technique used widely in Japan is usually adopting 8 displacement sensors, we are 
going to discuss whether 8 sensors are enough or not to stably determine the anisotropy through back 
analysis.  If 8 sensors are good enough, then we will be able to use the same testing method and devices 
for the anisotropy determination.  The directions of the 8 sensors are conceptually shown in Fig.9, 
namely, 4 horizontal directions and other 4 in inclined directions.  Both ends of each sensor touch the 
wall of center hole via mortar.   
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Table 6.  References for measured anisotropy data for rock and sand, plotted in Fig.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 7.  Elasticity matrix for orthogonal anisotropy with reduced number of independent parameters. 

 
 

5.2 Back analysis procedure 
 

The simple solution eq.(1) is for the pressurization only on the outer lateral surface and not on the both 
ends.  In the actual testing mentioned above, axial loading 16/15 times that on the lateral surface is added.  
16/15 is the correction of cross section area of the center hole.  Since the elastic response to the axial 
loading can be simply calculated, it is added to the simple solution ur

H, uz
H and εz

H to obtain the center 
hole deformation corresponding to the testing condition, as follows. 

 
Ur

H = ur
H + ur

ax 
Uz

H = uz
H + uz

ax 

Εz
H =εz

H + εz
ax             (8) 

 
Here, ur

ax, uz
ax and εz

ax are the displacements in directions r and z and strain in z by the axial loading 
16/15 times the pressurization.   

Eq.(8) is the solution of deformation of center hole for the loading condition of actual testing, and thus 
enables the forward analysis to calculate Ur

H, Uz
H and Εz

H.  The displacements measured by the 8 
sensors in the center hole can be easily obtained using eqs.(8).  As a result, we can forwardly calculate 
the displacement Ui of ith sensor using the 7 parameters for the simplified orthogonal anisotropy even if 
we do not know the directions of the anisotropic axes.   

 
Ui = fi(C11, C22, C33, kg, θ1, θ2, θ 3)    (9) 
 

C11 kv(C11+C22) kv(C11+C33) 0 0 0
C22 kv(C22+C33) 0 0 0

C33 0 0 0
kg(C22+C33) 0 0

Sym. kg(C33+C11) 0
(Note  : kv=1/2-2kg) kg(C11+C22)
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Since we are going to use 8 sensors, we may be able to determine the 7 unknown parameters C11, C22, 
C33, kg, θ1, θ2 and θ 3 using the 8 measurements, through back analysis based on iterative convergence 
technique similar to nonlinear least squares regression.   

The definition of  θ1, θ2 and θ 3 are set in this paper as shown in Fig.10.  θ1 is the dip of major 
anisotropic plane on the X-Y surface.  θ2 is the dip direction measured from –Y toward –X.  θ3 is the 
rotation around the normal of the major anisotropic plane.  The order of the three rotations is first (a), 
then (b) and finally (c) in Fig.10.  Before the rotation (a), the anisotropic axes and coordinate X-Y-Z are 
agreeing with each other.   

 
 

Fig.9 Directions of 8 displacement sensors in the center hole. 
 

 

Fig.10 Procedure of rotations. 

     In the order (a), (b) and (c). 
 

5.3 Confirmation of stability of back analysis 
 

Generally speaking, back analysis does not always give a unique answer but can give some false 
answers when the converging path falls into a local pit-hole.  Therefore the objective of this section is to 
make clear whether the present back analysis described so far is stable or not. 

The anisotropy set for this purpose is shown in Table 8.  The ratio of anisotropy of normal elasticity, 
C11/C33 is 2, and rotation transformation is applied 3 times.  The specimen of hollow cylinder is supposed 
to be taken out in z direction from such orthogonal anisotropic rock.  Then corresponding to the test 
procedure described in section 5.1, the normalized displacements in 8 directions are calculated using 
eqs.(9).  These 8 values are the input for the back analysis to determine the anisotropy and its direction.   

 
 
 
 
 

(a) θ3 rotation around Z 
(b) θ1 rotation around 

(c) θ2 rotation around Z 
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Table 8.  Anisotropic parameters to be used for back analysis. 

 
 

Fig.11 An example of convergence characteristics of back analysis.  

     (Distribution of residual error on kg-θ3 plane) 
 
 

To observe the performance of convergence visually, the following study has been done.  The 
variables kg and θ 3 are fixed to every combination and other 5 unknown variables have been determined 
by the back analysis of present scheme.  Then the residual errors are drawn on the kg-θ 3 plane.  The 
resultant 3D bird’s eye view is shown in Fig.11.  From the figure, we can see that the residual error is 
zero when kg and θ 3 are correct, and thus correct answer is being derived.  Also we can see that there are 
no local pit hole that can hinder to obtain the correct answer in the converging path.  This means that 
even if we do not know the correct values of kg and θ 3, we can come to the correct answer by the back 
analysis.   

The above-mentioned verification of the stability of the back analysis is for the anisotropy case shown 
in Table 8, and we cannot deny that some special cases exist for which we may get into some pit holes.  
But basically the stability of the present method has been manifested.   

Rocks and soil grounds often have visible anisotropic plane such as bedding.  In such cases, 2 of the 3 
parameters about the direction of the anisotropy are known.  Then the resultant number of unknown 
parameters is 5 and the stability of back analysis will much improve.   

C11 20 θ1 30
C22 17 θ2 30
C33 10 θ3 30
kg 0.15

7.416 7.013 5.871 -0.646 -0.558 -1.025
7.0125 17.646 5.917 -1.616 -0.223 -1.025
5.871 5.917 11.938 -1.616 -0.558 -0.41
-0.646 -1.616 -1.616 4.438 -0.308 -0.167
-0.558 -0.223 -0.558 -0.308 4.403 -0.485
-1.025 -1.025 -0.41 -0.167 -0.485 5.259
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Fig.12 Convergence characteristics for cases with no input error (a),  and 10% input error (b), (c) and (d)  

     (Distribution of residual error on kg-θ3 plane) 
 
 

5.4 Influence of measurement error on the stability 
 

In the previous section 5.3, the deformation in the center hole used as the input to the back analysis has 
been the exact value of theoretically calculated deformation by eqs.(9).  But actual measurement of the 
deformation cannot be free from some error.  Moreover, even if there is no measurement error in the 
center hole deformation, true anisotropy can be different from the simplified orthogonal anisotropy 
presented as Table 7 in chapter 4.  Therefore, it has been of interest to clarify the influence of the error on 
the stability of back analysis.  For this purpose, some errors have been added to the exact value of 
deformation and used as input to the back analysis.   

Fig.12 is similar to Fig.11 but drawn 2 dimensionally.  The residual error is not on the 3rd axis but 
shown as shading on kg-θ3 plane.  Fig.12(a) is just for the case in Fig.11 with no measurement error.  
Fig.12(b), Fig.12(c) and Fig.12(d) are the results of 3 examples of the case with 10% error in the input 
value to the back analysis.  10% error has been generated as uniform random value with 10% width of 
the exact value of theoretical deformation.  In the three cases, back analyzed values of kg and θ3 may be 

(a) 0% input error. (b) an example for 10% input 

(c) an example for 10% input (d) an example for 10% input 
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a little different from the exact values of 0.15 and 30 degrees.  The differences are within 0.025 for kg 
and 5 degrees for θ3.  The shading patterns in the figures (b), (c) and (d) reveal that the back analysis is 
stable even if the input value contains errors in the order of 10%.   

 
5.5 Conclusion about the back analysis  

 
It has been verified that measurement of deformation in the center hole of a cylinder enables us to 

determine the orthogonal anisotropy of the specimen even when we do not know the directions of the 
anisotropic axes.  It has also been demonstrated that the back analysis necessary for the determination is 
stable and does not lead to false results even when about 10% measurement error exists.   

 
 

6. Conclusion 
 

In the conventional geo-engineering for important infrastructure, plate jack test has been conducted to 
determine deformability of the rock.  For future’s necessity to determine its anisotropy for more rational 
design and for more detailed evaluation of rock behaviour, a method of determining anisotropy has been 
developed adopting the similar testing size as the plate jack test.  The method has the following features. 

The method is based not on a seismic test but on a loading test.  Anisotropy at the in-situ static load 
level is determined by a pressurization test of a hollow cylinder. 

Since the load is applied by pressurization, there is no fear of eccentric loading and the test is easy to 
perform. 

The size of the specimen is large, in the order of a few tens centimeter to a meter.  So the damage in 
the rock caused by sampling can be expected to be small. 

The method theoretically requires only one specimen to determine a set of anisotropy.  So the method 
is efficient and is not likely to be disturbed by variability of properties.  

The method can determine orthogonal anisotropy and it is true even when the directions of the 
anisotropy are unknown. 

This paper has noted the outline of the development of the method and demonstrated that the method is 
robust and practical through some simulations.  In the future, a measurement device adequate for the 
method wants to be developed and the method wants to be applied to practical engineering. 
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