정상운전시 가연성폐기물 감용 시설 주변 방사선 환경영향 평가

김희령, 황원태, 최근식, 홍상범, 이기원, 정운수 한국원자력연구원, 대전시 유성구 대덕대로 1045 kimhr@kaeri.re.kr

1. 서론

한국원자력연구원 (KAERI)에서는 원자력시설 로부터 발생하는 가연성 폐기물을 처리하고자 감 용 (소각) 시설을 운영하기 위한 인허가를 진행중 에 있다. 대상 폐기물은 발생원에 따라 KAERI 발생폐기물, 우라늄변환시설 (UCF) 해체폐기물, 한전원전연료 (KNF) 운영폐기물 및 RI 폐기물이 다. 따라서 감용 시설의 운영시 폐기물의 소각에 의하여 기체상의 방사성물질이 대기로 방출될 수 있다. 본 연구에서는 시설의 건전성과 주민에 대 한 건강상 위해를 방지를 위하여 가연성 폐기물 시설의 정상 운전시 부지 주변의 주민선량을 평 가하고자 한다.

2. 환경영향평가

2.1 방사성물질의 방출량 및 방출특성

가연성 폐기물 소각시설의 소각 처리량은 KAERI, UCF, KNF 발생 폐기물의 경우 40,000 kg/y이다. RI 폐기물의 경우 ¹²⁵I 함유 가연성 폐기물은 10,000 kg/y, 유기폐액은 5,000 L/y (³H) 및 3,000 L/y (¹⁴C)이다. 주요 핵종에 대한 방사성 폐기물 발생원별 환경방출량을 표 1에 나타내었다.

Table 1. Environmental release according to the sources of the radioactive waste

	발생원	주요핵종	비방사능 (Bq/g or Bq/mL)	제염계수 (DF)	환경 방출량 (Bq/yr)
	KAEKI	⁶⁰ Co, ¹³⁴ Cs, ¹³⁷ Cs, ¹⁵² Eu, ¹⁵⁴ Eu	1,780	2.60×10^4 4.70×10^5	1.34×10 ⁶
	UCF	²³⁸ U 등 28 핵종	199	4.70×10 ⁵	1.99×10 ⁵
KNF		²³⁸ U 등 28 핵종	127	4.70×10 ⁵	1.08×10 ⁵
RI 폐	가연성 개봉선원	¹²⁵ I	0.0476	10 ²	4.74×10 ³
기 물	유기폐액	³ H ¹⁴ C	888 370	1	4.44×10 ⁹ 1.11×10 ⁹

KAERI 발생 폐기물의 채염계수는 비휘발성핵종인 ⁶⁰Co, ¹⁵²Eu, ¹⁵⁴Eu, 반휘발성핵종인 ¹³⁴Cs, ¹³⁷Cs로 구분하였다. UCF의 경우 천연우라늄 (0.72%)으로 가정하고 딸핵종의 생성을 고려하여 방사선원항을 20년 경과된 시점으로 설정하였다, KNF의 경우 최대 5%의 농축도를 가지는 폐기물로 가정하였다. 두 시설의 우라늄의 비방사능 총량은 100 Bq/g로 하고, 제염계수는 ⁶⁰Co과 동일한 값을 적용하였다. 소각 시설의 높이는 지상으로부터 12 m, 굴뚝높이는 지상으로부터 15 m, 시설의 최소단면적은 204 m²이다.

2.2 방사성물질의 대기중 이동

소각시설이 있는 부지의 74.5 m 높이의 기상판 측탑에서 3개 측정고도 (10 m, 27 m, 67 m)별로 풍향, 풍속, 온도, 습도 등 기상요소를 측정ㆍ수집하고 있다. 소각시설의 경우 지표 방출에 해당되며 부지경계에서 최대 대기확산인자를 나타낸다.대기로 방출되는 기체상 방사성물질에 대한 대기확산인자 및 침적인자를 미국 원자력위원회의 규제지침 1.111에 근거하여 도출하였다. 대기확산인자와 침적인자는 남남서 (SSW) 방향 부지경계에서 최대치를 보이며, 방사능 붕괴 및 침적을 고려하지 않은 대기확산인자는 3.684×10⁻³ sec/m³, 방사능 붕괴만을 고려한 대기확산인자는 3.681×10⁻³ sec/m³, 방사능 붕괴만을 고려한 대기확산인자는 3.681×10⁻³ sec/m³, 방사능 붕괴만을 고려한 대기확산인자는 8.946×10⁻⁷ sec/m³을 나타냈다.

2.3 주민선량 평가

2.3.1 개인선량

외부피폭선량은 불활성기체 (공기중 흡수선량, 유효선량 및 피부 등가선량), 오염된 토양 (유효 선량 및 피부 등가선량)에 의하여 받게 될 선량을 계산하였다. 이때 기타 다른 내부 장기에 대한 등 가선량은 유효선량과 같은 것으로 간주하고 연령 군에 대한 구별은 하지 않았다. 내부피폭선량은 1 년간 호흡 및 농축산물의 섭취에 의하여 피폭자가 일생동안 받게 될 예탁선량으로 계산하였다. 소각시설로부터 방출되는 핵종 특성상 입자상 방사성물질 (³H, ¹⁴C, ¹²⁵I)에 의한 인체 장기 등가선량을 고려하였다. 또한, UCF 및 KNF 폐기물에서발생되는 ²¹⁹Rn, ²²²Rn는 알파 방출체의 불활성기체로 공기흡수 및 외부피폭은 무시할 수 있다.

2.3.2 집단선량

주민에 대한 집단선량 계산은 가상적인 개인이 받게 될 최대 피폭선량 조건 대신 평균적인 조건 하에서의 변수들을 사용하여 반경 80 km이내에서 받게 되는 선량을 계산하였다. 연령군은 성인, 십 대, 소아로 구분하여 외부 및 내부 피폭선량을 계 산하였다.

2.3.3 평가 결과

KAERI 발생 폐기물, UCF 및 KNF 발생 폐기물, RI 고체폐기물 및 유기폐액을 각각 최대로 소각 처리하였을 때 성인이 받는 피폭선량을 표 2에 나타내었다. 이때 개인 선량은 최대 피폭지점인 부지경계 (SSW 방향)에서의 값이다.

Table 2. Calculated dose at the site boundary

종류	구분 발생원	童	소화기	畸 .	간	콩팥	갑상선	я
개인 (mSv/y)	KAERI UCF KNF RI 고체 RI 유기폐액	1.89E-04 2.81E-05 2.64E-05 4.20E-07 2.52E-02	2.39E-04 5.79E-06 6.02E-06 2.07E-09 2.60E-02	2.12E-04 9.62E-05 8.59E-05 6.09E-09 2.47E-02	1.91E-04 1.03E-05 9.91E-06 9.13E-10 2.47E-02	1.86E-04 2.72E-05 2.61E-05 1.01E-09 2.47E-02	2.56E-06 8.59E-06	1.88E-04 1.92E-04 1.79E-04 1.38E-09 2.47E-02
집단 (man-Sv/y)	KAERI UCF KNF RI 고체 RI 유기계액	2.11E-05 7.20E-06 6.74E-06 3.81E-08 2.01E-03	2.34E-05 5.77E-07 5.61E-07 2.27E-10 2.09E-03	2.59E-05 1.20E-05 1.12E-05 8.31E-10 1.96E-03	2.10E-05 1.46E-06 1.40E-06 1.23E-10 1.96E-03	2.01E-05 3.83E-06 3.72E-06 1.59E-10 1.96E-03	3.84E-07	2.11E-05 5.38E-05 5.02E-05 1.89E-10 1.96E-03

표 2에서 보면 개인 피폭에 대한 유효선량은 RI 유기폐액 소각의 경우가 0.0252 mSv/y로 가장 높게 나타났다. 최대 피폭 장기는 RI 유기폐액에 의한 소화기로서 0.026 mSv/y를 나타내었다. 이 값은 설계기준치 0.15 mSv/y보다 작으며 일반인에 대한 선량한도인 1 mSv/y의 약 2.6%를 나타내었다. 동 시설로부터 반경 80 km내 집단선량은 개인선량과 마찬가지로 RI 유기폐액 소각시 가장 높았다. RI 유기폐액 소각시 유효선량은 0.00201 man-Sv/y로 1인당 연간 평균선량은 총 인구가 6,512,000명임을 고려하면 3.09×10⁻⁷ mSv/y로 평가되었다. 이는 일반인이 자연 방사선으로부터 받

게되는 2.4 mSv/yr의 1.29×10⁻⁵%에 지나지 않음 을 알 수 있다.

3. 결론

가연성 폐기물 감용 (소각) 시설의 운영으로 인해 주변 주민이 받게 되는 방사선영향을 평가 하였다. 피폭선량은 일반인에 대한 연간 선량한도 보다 매우 작게 나타나 이러한 시설이 주변 환경 에 미치는 방사선 영향은 무시할 수 있는 것으로 생각되었다.

4. 참고문헌

- [1] 교육과학기술부, "방사선방호 등에 관한 기준 고시", 교과부 고시 제 2008-31호, 2008.
- [2] 한국에너지연구소, 고리 주변 환경종합평가 및 관련모델 개발: 고리 원자력 주변주민 피폭선 량 계산지침서, 부록 X, KAERI/NSC-397/89, 1989.
- [3] US NRC, XOQDOQ: A Computer Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations, NUREG/CR-2919, 1982.
- [4] US NRC, User's Guide to GASPAR Code, NUREG-0597, 1980.
- [5] 대덕 원자력관련시설의 운영중 방사선 환경영 향평가 (2008년보), KAERL/CR-322/2008, 2009.
- [6] ICRP, "Dose Conversion Factors CD-ROM"
- [7] Eckerman 등, "DFEXT 코드 외부피폭 선량 환산계수", U. S. ORNL, 1994.
- [8] US NRC, PAVAN: An Atmospheric Dispersion Program for Evaluating Design Basis Accidental Releases of Radioactive Materials from Nuclear Power Stations, NUREG/CR-2858, PNL-4413, 1982.
- [9] 양희철 외, 시험소각결과에 기준한 한국원자력 연구소 소각시설의 방사학적 안전성 평가,대한 방사선방어학회 vol. 23, no. 2 109-114, 1998.