정안열, 이종현, 전희종, 박종후 숭실대학교

Efficiency Analysis of High-frequency Switching Inverter to Inductance values in Power Conditioning system for Power Generation

A.Y Jung, J.H. Lee, H.J. Jeon, J.H. Park Power Electronics Laboratory, Soongsil University

ABSTRACT

계통 연계형 태양광 시스템을 구성하고 있는 전력변환 장치 인 전력 조절기는 일반적으로 DC-DC 컨버터와 DC-AC 인버 터인 Two-Stage로 구성되어 있다. 본 논문에서는 인덕턴스의 값을 변화하면서 태양광 발전용 전력 조절기의 풀 브리지 고주 파 스위칭 인버터에 대한 효율을 3KW급 Prototype을 구성하 여 이론 분석과 비교하여 검증 하였다.

1. 서 론

환경 및 온난화 문제로 인한 신재생 에너지 기술 개발을 통 한 에너지 다원화가 전 세계적으로 진행되어 있으며 여러 신재 생 에너지 중에 연료전지, 태양광, 풍력발전 등에 대한 연구가 활발히 진행되어 오고 있다.

태양광 발전은 태양광 모듈에서 발생한 직류원을 축전지에 저 장하고 이를 다시 인버터를 통해 교로로 변환하여 사용하는 시 스템이다. 국내의 태양광 발전 시스템에서 전체 효율은 약 94% 정도이며 이중 대부분 인버터에서의 손실이 크다.

이러한 인버터 손실에 영향을 주는 요인이 스위칭 기법, DC-Link 전압 등 여러 요인 중에서 필터 인덕턴스 값에 따른 손실이 다르게 되며 이를 위한 설계가 필요하다.

본 논문에서는 필터 인버터의 인덕턴스 값에 따른 변화를 MATLAB의 SIMULINK를 이용하여 시뮬레이션을 하고, 3KW 급 태양광 전력 조절기의 고주파 스위칭 Full-bridge 인버터 하드웨어를 제작하여 효율 분석을 검증하고자 한다.

2. 본 론

2.1 시스템의 구성

본 논문에서는 계통 연계형 태양광 발전 시스템을 그림 1과 같이 PV 어레이, DC-DC 컨버터, DC-AC 인버터로 구성된다.

풀 브리지 인버터의 스위칭 소자는 일반적으로 동일 소자를 사용하는데, 단상 IGBT 승압형 컨버터와 동일한 구성으로, 전 력의 흐름을 DC측에서 교류측으로 운전하여 발전하는 형태가 된다. 따라서 풀 브리지 인버터는 전압 강압형 전력변환기 이 므로 DC 측 전압은 최소한 교류출력전압의 최대 전압보다 커 야 제어가 가능하게 된다.

2.2 인덕턴스 설계

그림 1에서 인버터 측의 필터 인덕터(Lf)는 리플전류를 고려 하여 구하는 수식은 (1)과 같다.^[1]

$$L_{inv} \ge \frac{V_{dc}}{8 \times i_{ripple Max} \times f_{sw}}$$

$$= \frac{400}{8 \times \sqrt{2} \times 9.375 \times 0.15 \times 18000} = 1.00 [mH]$$
(1)

2.3 인버터 손실 및 시뮬레이션 2.3.1 도통 손실

그림 2 계통주기내에서의 1/4주기 등가필터인덕터리플전류^[2]

도통 손실에서 스위칭 리플 전류의 실효값은 그림 2의 계단 파 형과 같고, 따라서 전원주기에 스위칭 리플전류성분의 실효값 은 인덕턴스에 값에 따라 달라진다.

$$\begin{split} P_{con\,ight} &= I_{cavg} \cdot V_{CEO} + R_{bn\,ight} \cdot I_{C.r\,\text{ms}}^2 \\ & \textcircled{H}, \quad I_{c.avg} = \frac{1}{2\pi} \int_0^{\pi} ic \cdot D \cdot d\theta \\ & I_{c.r\,\text{ms}} = \frac{V_{dc} T_s}{4L} \sqrt{\frac{2m_a^2}{3\pi} (1 + \frac{3}{4}m_a) - \frac{4}{3}m_a} \end{split}$$

(2)

단, $D(\theta) = \frac{1}{2} [1 + m_a \sin(\theta + \phi)]$ $M(\theta) = \sin(\theta + \phi), M(\theta) \in [-1, 1]$

인버터는 스위치에 역전류가 흐르는 구간에서 스위치의 다이

오드로 전류가 도통할 때의 손실은 식 (4)와 같다.

$$P_{con.dio} = I_{Favg} \cdot V_{CEO} + R_{on.ight} \cdot I_{Frms}^2$$
 (3)
단, $I_{Favg} = \frac{1}{2\pi} \int_{0}^{\pi} i_F \cdot (1-D) \cdot d\theta$
 $I_{F.rms} = \frac{V_{dc}T_s}{4L} \sqrt{\frac{2m_a^2}{3\pi}(1+\frac{3}{4}m_a) - \frac{4}{3}m_a}$

2.3.2 스위칭 손실

Switch loss는 다음과 같다.

Reverse recovery of diode loss은 다음과 같다.

$$P_D = \frac{1}{T_s} \cdot \int\limits_{\substack{switching \\ transition}} v(t)i(t)dt \approx (Vit_{rr} + VQ_{rr})f_s[W]$$
(4)

단, t_{rr} 은 다이오드 역회복 시간이며, Q_{rr} 은 다이오드 역방향으로 흐르는 총 전하량이다.

2.3.3 기타 손실

전력 변환 시스템의 전력 손실 성분에는 스위치와 다이오드 외에도 도선의 저항성분이나 인덕터의 저항성분에 의한 전력 손실, 인덕터의 와전류에 의한 전력 손실 등 여러 가지가 있다. 이들 중 스위치와 다이오드에서 발생하는 전력 손실에 비해 무 시할 수 없는 크기를 가진 전력손실 성분인 인덕터의 저항 성 분에 발생하는 인덕터 도통 손실과 인덕터 코어에서 발생하는 히스테라시스 손실인 인덕터 코어 손실을 식은 (8), (9)과 같다.

$$P_{L_ESR} = R_{L_ESR} \times I^{2}_{L,rms} \quad [W]$$
(8)

$$P_{core} = f_s A_c l_m \int_{one \, cycle} H \cdot dB \quad [W]$$
(9)

 $(A_c l_m : Volume of the core [cm³])$

2.3 시뮬레이션

MATLAB의 SIMULINK MATLAB의 SIMULINK Tool을 활 용하여 다음 그림 4와 같은 태양광 PCS의 손실 식을 대입하여 도식하였다.

그림 3 SIMULINK를 적용한 인버터 손실 다이어그램.

필터 인덕턴스의 변화에 따라 설계한 인덕턴스 값보다 낮거나 증가하면 효율이 감소하는 경향을 볼 수 있다.

2.4 실험 결과

효율 분석하기 위해 VOLTECH PM3000A Power Analyzer를 사용하였고, 소자 선정은 다음과 같다. 표 1 소자 선정

 C_{DC-link}
 2200uF/450V
 S1 -S4
 FGA80N60FD2

 Lf
 0.8mH - 1,6mH
 Cf
 2uF

실험 결과 시뮬레이션에서 나타난 효율 곡선의 경향을 보였으 며 표 2와 그림 5에 나타내었다.

표 2 3KW에서 L값 변화에 따른 효율 값.

3. 결 론

본 논문은 3[kW] 단상 인버터를 인덕턴스 값에 따라 효율을 분석 및 실험하였다. 각 도통손실과 스위치 손실을 분석하였고 MATLAB의 SIMULINK를 이용하여 효율 경향을 볼 수 있었 다. 이를 하드웨어 Prototype을 이용하여 검증하였고, 이론값에 서 예측한것과 같이 실험 결과 필터 인덕턴스 값이 1.0[mH]에 서의 효율이 가장 높은 것을 확인 할 수 있었다.

[3] G.I.orfanoudakis, "Loss Comparison Of Two And Three-Level Inverter Topologies", live.eprints.soton.ac.uk