리튬 배터리 충방전 특성을 고려한 양방향 DC/DC 컨버터 설계

임재관*, 임덕영*, 최재호*, 권경민**, 정교범*** 충북대학교*, 우진산전**, 홍익대학교***

Design of Bidirectional DC-DC converter for Lithium Battery Charging/Discharging Characteristics

Jaekwan Im^{*}, Deokyoung Lim^{*}, Jaeho Choi^{*}, Kyoung-min Kwon^{**} Gyo-Bum Chung^{***} Chungbuk National University*,WooJin industrial system**, Hongik University***

ABSTRACT

본 논문은 에너지 저장장치로 각광받는 Li 배터리를 이용한 양방향 DC-DC컨버터의 구성 및 빠른 통특성을 갖는 이중 루 프 PI제어기 설계를 제시하였다. 제어기는 초기 충전을 위한 정전류 제어기와 초기 충전 이후에 동작을 개시하는 전력제어 기를 구성하였다. 배터리 모델링 및 양방향 DC-DC 컨버터용 제어기는 PSIM을 이용한 시뮬레이션을 통하여 검증하였으며, 그 타당성을 실험을 통하여 확인하였다.

1.서 론

리튬 배터리는 높은 에너지 밀도와 긴 수명을 가지고 있기 때문에 휴대기기, 전기자동차 등과 같은 곳에 사용이 증가하는 추세이다. 일 반적으로 이러한 배터리는 물리 기반의 자세한 모델이 있지만, 본 논문에서는 배터리의 전기화학적 동적 특성은 1개의 전압원과 캐패 시터/저항의 조합으로 전기적 등가모델로 나타냈다. 배터리 파라미터 는 전기화학적 상태로 결정되며, 배터리에 인가되는 전류의 크기 (C-rate), SOC 및 온도에 크게 의존하여 변동된다.^[1]

이러한 특성을 가진 배터리는 최근 이슈가 되고 있는 하이브리드 자동차 및 스마트그리드와 관련하여 에너지 저장장치로서 각광을 받 고 있다.

본 논문에서는 배터리의 충방전 특성을 고려하여 입력 전원부 를 구성하였고 과도 상태에서 배터리의 응답특성을 개선하기 위 하여 뒷단에 슈퍼캐패시터를 사용한 양방향 DC-DC 컨버터를 구성하였다. 구성된 컨버터는 빠른 동특성을 갖는 PI제어기를 설 계하였다. 설계한 특성 확인은 PSIM을 이용한 시뮬레이션 및 실 험을 수행함으로서 제시하는 제어기 설계의 타당성을 검증 및 확인하였다.

2. 배터리 및 슈퍼커패시터 모델링

2.1 배터리 모델링

배터리의 전기화학적 동적 특성을 비교하기 위하여 등가 회로를 그림 1(a)와 같이 나타내었다. 등가 회로는 배터리 내부저항 Rs와 분극 현상을 나타내는 충방전 전류에 의한 손실저항 R1, R2 및 이 중층의 캐패시턴스 C1, C2로 구성된다. 배터리 개회로 전압(open circuit voltage) Vocv는 무부하 정상상태에서의 배터리 단자 전압 이며, 배터리내 잔존 에너지 용량 SOC는 비선형 함수로 표현된다. 선 형 영역에서 Rs의 값을 구하기 위하여 사용된 식은 다음과 같다.

$$V_{R_{s}} = V_{R_{s2}} - V_{R_{s2}}$$
 (1a)
 $R = \frac{V_{R_{s}}}{T}$ (1b)

구하여진 선형의 영역은 1초 정도의 매우 짧은 시간 이지만, 배터리 의 자기 방전 및 자기 충전에 대한 특성과 초기 전달함수에 큰 영 향을 가진다.

그림 1 배터리와 슈퍼캐패시터 등가회로

Fig. 1 equivalent circuit for Battery and Supercapacitor

2.2 슈퍼캐패시터 모델링^[2]

슈퍼캐패시터는 서로 다른 시정수를 가지는 RC전송라인으로 선형화 하였을 때 3개의 전송라인으로 모델링되고 그 때의 등가 모델은 그림 1(b)와 같이 구성할 수 있다. 그림 1(b)에서 각 전 송라인의 캐패시터는 전압 의존성을 반영하기 위해서 고정 캐패 시터(*C*)와 전압상승에 따라서 비선형적으로 증가하는 전압 종 속 커패시터(*C*_v)로 모델링되어지며, 후단의 자기 방전의 특성을 가지는 병렬 저항으로 구성된다.

3. 양방향 DC-DC컨버터 제어기

에너지 저장장치 구동을 위한 양방향 DC-DC컨버터는 그림 2 에서 보는 것과 같이 구성된다. DC링크단의 배터리가 주 전원으 로 사용되고 응답속도가 빠른 슈퍼캐패시터를 컨버터의 후단에 결선함으로서 DC링크단의 전압이 감소하면 슈퍼캐패시터에서 먼 저 공급하고 또한 DC링크단에 전원이 상승하게 하면 슈퍼캐패시 터에서 이를 충전함으로서 DC링크단의 전압을 안정화를 가져온 다.

3.1 양방향 DC-DC 컨버터의 제어기 설계^[3]

에너지 저장장치 구동을 위한 양방향 DC-DC컨버터의 제어 기는 그림 4에서 보는 것과 같이 초기 슈퍼캐패시터의 정전 류 충전을 위한 전류제어기와 초기충전 이후에 개시하는 전력 제어기로 구성을 하였다.

초기충전 시에는 그림 4(a)에서 보는 것과 같이 정전류로 충 전하기 위한 PI전류제어기와 완전 방전된 슈퍼캐패시터의 초기 돌입전류에 의한 제어기의 포화를 방지하기 위한 소프트

Fig. 3 Structure of bidirectional DC-DC converter

(a) 초기충전모드 시 제어기 구성도 (b) 전력모드 시 제어기 구성도 그림 4 컨버터의 모드에 따른 제어 블록도

Fig. 4 Control block diagram following mode of converter 스타트 제어기로 구성되며, 시스템 전달함수 G(s)는 식(2)와 같다.

$$G(s) = \frac{I_{sc}(s)}{V_{BL}(s)} = \frac{1}{sL_{BL}}$$
(2)

계산된 시스템 전달함수로부터 폐루프 전달함수 H(s)를 계 산하면 식(3)과 같이 유도되어진다.

$$H(s) = \frac{PI_{cc}(s)G(s)}{1 + PI_{cc}(s)G(s)} = \frac{K_{Ip}s + K_{Ir}}{L_{RI}s^{2} + K_{Ir}s + K_{Ir}} \quad (3)$$

2차 계통의 페루프 전달함수인 식(3)과 2차 원형계통의 전달 함수로부터 전류제어기의 이득을 계산하면 식(4)와 같이 계산되 어진다.

$$\begin{cases}
K_{Ip} = 2\xi \omega_n L_{BL} \\
K_{Ii} = \omega_n^2 L_{BL}
\end{cases}$$
(4)

여기서 ξ는 2차 원형계통의 댐핑계수로 0.707로 설정하였고 ω_n 은 전류제어기의 절점주파수로 내부루프인 전압제어기를 고려하 여 100[Hz]로 선정하였다.

내부루프인 전압제어기에 있어서 시스템 전달함수 G(s)는 슈퍼캐패시터로 흐르는 전류 방정식으로부터 식(5)과 같이 표현 할 수 있다.

$$G(s) = \frac{V_{sc}(s)}{I_{sc}(s)} = \frac{1}{sC_{sc}}$$
(5)

계산된 시스템 전달함수로부터 폐루프 전달함수 H(s)를 계 산하면 식(6)과 같이 유도되어진다.

$$H(s) = \frac{PI_{vc}(s)G(s)}{1 + PI_{vc}(s)G(s)} = \frac{K_{Vp}s + K_{Vi}}{C_{sc}s^2 + K_{Vp}s + K_{Vi}} \quad (6)$$

전압제어기의 이득선정도 전류제어기와 같은 방법으로 2차 원 형계통의 전달함수로부터 계산할 수 있다.

본 논문에서는 외부루프인 전류제어기의 응답속도와 스위칭 주파수를 고려하여 절점주파수를 1[kHz]로 선정하였다.

전력모드 시 내부 루프인 전류제어기는 식(2)~식(4)와 동일 한 전달함수로 계산되어지고 이때에는 초기충전모드 일 때와 달 리 내부루프에 위치하게 되어 외부루프인 전력제어기의 절점주 파수보다 빠른 절점주파수를 가지게 된며 이때 전력모드에서의 전류제어기의 절점주파수는 500[Hz]로 선정하였다.

또한 전력모드에서 외부루프인 전력제어기는 DC링크단의 전 력을 제어하는 것으로 DC링크단의 임피던스는 추종값과 실제값 이 항상 같게 됨으로 결국 V_{dc}^2 에 의한 에러값을 보상하는결과와 동일하게 계산되어진다. 전력제어기에 있어서 시스템 전달함수 G(s)는 식(7)의 관계에 의해 식(8)와 같이 전압

그림 5 초기충전모드와 전력모드 실험 결과

Fig. 5 Experiment results for initial charging and power mode 제어기의 시스템 전달함수와 동일하게 계산되어진다.

$$P_{dc} \simeq P_{sc} = \frac{1}{2} C_{sc} V_{sc}^2 = V_{sc} I_{sc}$$
(7)

$$G(s) = \frac{P_{dc}(s)}{I_{sc}(s)} = V_{sc}(s) = \frac{1}{sC_{sc}}$$
(8)

외부루프인 전력제어기의 절점주파수는 내부루프의 1/10로 선정 하여 내부루프인 전류제어기에 영향이 가지 않도록 구성하였다.

외부루프인 전력제어기의 절점주파수는 내부루프의 1/10로 선정하여 내부루프인 전류제어기에 영향이 가지 않도록 구성하 였다.

3. 시뮬레이션 및 실험 결과

본 논문의 알고리즘을 검증하기 위해 시뮬레이션은 PSIM을 이 용하여 수행하였다. 시뮬레이션은 PSIM에서 제공되는 DLL을 사 용하여 제어부를 구성하였고 제어부로 들어오는 모든 신호는 200 [μs]로 샘플링하였으며, 제안한 모든 제어기는 Tustin's 변환을 적용하여 디지털 PI제어기로 구성하였다.

초기충전모드시 시뮬레이션은 0.1[s]동안 소프트스타트를 수 행하고 30/50/100A로 변화하여 정전류 충전을 수행함으로서 소 프트스타트기법과 정전류 제어기의 동작특성을 확인하였다.

전력모드시 시뮬레이션은 배터리 전원을 45[V]로하고 0.5[s] 동안 DC링크 전압을 48[V]로 상승하고 20/10/6.7/5Ω으로 DC 링크 부하를 증가하였을 경우에 대해 전력제어기의 응답 특성을 확인하였다. 그림 6(a), (b), (c)는 실험에서 시뮬레이션과 유사 한 결과를 나타냄을 보여준다.

4.결론

본 논문에서는 배터리 충방전 특성을 고려한 양방향 DC-DC 컨버터를 구성하였고 구성된 컨버터는 초기충전모드와 전력모드 로 나누어 초기충전모드에서는 정전류로 충전할 수 있도록 PI제 어기의 이득을 선정하였고 초기 돌입전류를 방지하기 위한 소프 트스타트기법을 제안하였다. 전력모드 시에는 DC링크단의 전압 을 평활하게 유지하기 위한 PI전력제어기를 제안하였다. 제안된 알고리즘의 검증을 위한 시뮬레이션은 PSIM을 통하여 수행하였 고, 실험을 통하여 수행결과가 시뮬레이션과 동일하게 동작함을 확인하였다.

"본 연구는	지식경제부 및	정보통신산업	진흥원의 대학
IT연구센터	지원사업의	연구결과로	수행되었음"
(NIPA-2009-(C1090-0904-0007))			

참 고 문 헌

- Stephan Buller, "Impedance-Based Simulation Models of Supercapacitors and Li-Ion Batterues for Power Electronic Applications," IEEE Transactions on industry application, Vol. 41, No.3, pp. 742-747, 2005
- [2] 노세진, 이진목, 이재문, 최재호, "PSIM을 이용한 슈퍼커패 시터의 전기적 모델링," 전력전자학술대회 2007년도 추계학 술대회 논문집, pp. 160-162, 2007.
- [3] 정상민, 조진상, 최세완, 한수빈, "하이브리드 에너지 시스템 에서 양방향 DC-DC 컨버터에 의한 축전지 제어 기법," 전 력전자학술대회 논문집, pp. 359-363, 2004.