하이브리드 자동차용 IPMSM의 토크 제어

박진호*, 이정효*, 최준혁**, 원충연* 성균관대학교*, 전자부품연구원**

Torque Control of IPMSM for Hybrid Electric Vehicle

Jin-Ho Park^{*}, Jung-Hyo Lee^{*}, Jun-Hyuk Choi^{**}, Chung-Yuen Won^{*} Sungkyunkwan University

ABSTRACT

하이브리드 자동차용 견인모터의 정출력 영역에서 토크 제어 시 회생제동은 엔진에 부하로 작용하여 매우 위험하다. 본 논 문에서는 HEV용 IPMSM의 정출력 영역에서 안정된 토크 제 어를 수행하기 위한 전류 지령 방법을 제안한다. 제안한 방법 은 시뮬레이션을 통하여 확인하였다.

1. 서론

하이브리드 자동차용 견인모터의 토크 제어는 엔진이 최고 효율을 갖는 출력 상태를 유지하고 그 외의 부족한 동력을 모 터가 보조하여 고효율 운전이 가능하게 한다.^[1] 이렇게 적절한 토크 제어는 일반 자동차에 비하여 높은 연비와 고효율 및 고 출력을 가능하게 하지만 그렇지 못할 시엔 엔진의 부하로 작용 하여 모터가 없는 일반 자동차보다 효율이 떨어지게 된다. 따 라서 하이브리드 자동차는 엔진에 동력을 전달하지 않는 영토 크 제어가 중요하다. 영토크 제어는 전동기의 정토크 영역에서 는 영전류 지령을 통해 쉽게 구현이 가능하지만 정출력 영역에 서는 적절한 제어가 수행되지 못할 경우 과도한 역기전력의 발 생으로 인하여 큰 회생 전류가 흐르면서 엔진에 과도한 토크가 인가되어 매우 위험하다. 따라서 본 논문에서는 정출력 영역에 서 각 축의 독립적인 전류지령방법을 통한 적절한 토크 제어 방법을 제안한다.

2. 하이브리드 자동차용 IPMSM의 토크 제어

2.1 정출력 영역에서의 토크 제어 방법

인버터로 구동되는 모터의 출력은 모터의 정격 전류와 인버 터의 최대 출력 가능한 전압 범위에 제한되므로 식 (1), (2)와 같이 나타낼 수 있다.

$$V_a = \sqrt{v_d^2 + v_q^2} \le V_{am} \tag{1}$$

$$I_a = \sqrt{i_d^2 + i_q^2} \le I_{am} \tag{2}$$

식 (1)의 전압 제한을 유기전압의 제한으로 치환하여 나타내 면 식 (3)과 같이 표현할 수 있다.

$$V_o = \omega \Psi_o = \omega \sqrt{\left(L_d i_d + \Psi_a\right)^2 + \left(L_q i_q\right)^2} \le V_{om}$$
(3)

역기전력의 크기는 유기전압 V_{om} 에 제한되며 모터를 정격 속도 이상으로 증가시키거나 유지하기 위해서는 역기전력의 크 기를 감소시켜 모터에 인가되는 전압 범위를 더 확보하여야 한 다. 이러한 제어 방법을 약계자 제어라 하며 이를 통하여 정출 력 영역에서 정격속도 이상의 고속 운전이 가능하게 된다.^[2]

그러나 그림 1(b)에서와 같이 정출력 영역에서 토크 제어 시 d축 전류가 i_{dA} 만큼 흐르면 그림 1(a)의 역기전력 전압은 V_{oB} 와 같이 증가하게 되어 큰 회생 전류가 흐르게 된다. 따라 서 본 논문에서는 이러한 제어로 인하여 생기는 문제점을 해결 하기 위하여 정출력 영역에서 토크 제어 시 각 축의 전류 지령 속도를 다르게 하여 안정적인 토크 제어가 가능하도록 하였다.

IPMSM의 토크는 식 (4)와 같이 표현할 수 있다.

$$T = P_n \{ \Psi_a i_a + (L_d - L_q) i_d i_a \}$$
(4)

q축 전류에 따라 토크가 증감하며 이는 역기전력의 크기와 비례함을 식 (3), (4)에서 알 수 있다.

약계자 제어 시 q축 전류 변화에 따른 전압제한원의 크기 변화와 d축 전류를 그림 2에 나타내었다.

그림 2 약계자 제어 시 i_a 변동에 따른 전압제한원

Fig. 2 Voltage limit ellipse by *q*-axis current variation at field-weakening control.

그림 2(a)와 같이 약계자 제어를 수행하면서 i_q 가 증가하면 토크 및 역기전력 전압의 크기가 증가하게 된다. 따라서 d축전류를 i_{a2} 만큼 더 흘려야하는데 d축 전류의 지령 속도가 q축전류의 지령속도보다 느리게 되면 그림 1(b)에서와 같이 전류 가 i_{dA} 만큼 흐르는 상태가 되어 큰 회생 전류가 발생하게 된 다. 따라서 본 논문에서는 각 축 전류 지령 속도에 차를 주기 위하여 그림 3과 같이 q축 전류를 증가시킬 때에는 d축 전류 를 step 지령으로, q축 전류를 ramp 지령으로 인가하여 토크 제어 시 전압 영역을 먼저 확보하여 안정적으로 토크 제어가 수행될 수 있도록 하였다.

그림 3 정출력 영역에서 토크 제어 시 전류 지령 방법

Fig. 3 Determination of current reference for torque control in constant power region.

2.2 2D-Interpolation 기법을 이용한 전류 지령 방법

전류 지령을 발생하는 과정은 그림 4와 같다. 속도와 토크지 령에 대하여 최적화된 전류값을 Lookup Table로 구성하고 보 간법으로 계산된 각 축의 전류 지령을 통하여 제어하였다. 2D-Interpolation에 사용된 수식은 식 (5)와 같다.

그림 4 Lookup Table과 보간법을 이용한 전류 지령 방법

Fig. 4 Determination of current reference using lookup table and interpolation.

$$f(x) = f(x_0) + (f(x_1) - f(x_0)/x_1 - x_0)(x - x_0)$$
(5)

3. 시뮬레이션

그림 5는 정격 30[kW], 1500[rpm]의 HEV용 IPMSM의 파 라미터로 시뮬레이션한 결과파형이다. 3000[rpm]으로 고속 운 전 시 120[Nm]의 토크를 출력하였으며, 동일 조건으로 전류 지령 방법만 바꿔 비교한 결과 각 축 전류를 일반 step 지령으 로 제어 시 토크 제어가 원활히 수행되지 못하여 큰 회생전류 가 흐름을 확인할 수 있다. 반면에 제안한 방법으로 제어할 경 우엔 토크 제어가 안정적으로 수행되는 것을 확인할 수 있다.

그림 5 토크 제어 시뮬레이션(3000[rpm], 120[Nm]) Fig. 5 Simulation of torque control.(3000[rpm], 120[Nm])

4. 결론

본 논문에서는 HEV용 IPMSM의 정출력 영역에서 안정적인 토크 제어를 수행하기 위한 전류 지령 방법을 제안하였다. 제 안한 방법은 정격 속도의 두 배가 되는 고속 운전 시에도 안정 적으로 토크 제어가 수행되는 것을 시뮬레이션을 통하여 확인 하였다.

참 고 문 헌

- Z.X. Fu, J. Xiang, W.C. Reynolds, B. Nefcy, "Vector control of an IPM synchronous machine capable of full range operations for hybrid electric vehicle application," in Proc. IAS, Vol. 3, pp. 1443–1450, 2003.
- [2] S.M. Sue, C.T. Pan, "Voltage-Constraint-Tracking-Based Field-Weakening Control of IPM Synchronous Motor Drives," IEEE Trans. Ind. Electron. Vol. 55 pp. 340-347, 2008.
- [3] T.S Kwon, G.Y. Choi, M.S. Kwak, S.K. Sul, "Novel Flux-Weakening Control of an IPMSM for Quasi-Six-Step Operation," IEEE Trans. Ind. Appl., Vol. 44, No 6, pp. 1722–1731, Nov./Dec. 2008.