지표-시추공간 전자탐사: 직접해와 감도분석

정용현¹⁾, 손정술²⁾, 이태종²⁾, 신창수¹⁾

¹⁾서울대학교 에너지자원공학과, <u>frolo@snu.ac.kr</u> ²⁾한국지질자원연구원

Surface-to-borehole Electromagnetic Survey : Direct Solution and Sensitivity Analysis

Yong Hyun Chung¹⁾, Jeong-Sul Son²⁾, Tae Jong Lee²⁾, and Changsoo Shin¹⁾

¹⁾Dept. of Energy Resources Engineering, Seoul Nat'l. Univ. ²⁾KIGAM

서 론

지표-시추공간 전자탐사는 시추공 내부에서 수신장비를 운용하여, 지표에서 발생시킨 전자기장의 반 응을 지하 심부에서 직접 획득함으로써 심부 이상체에 대한 분해능을 높일 수 있는 탐사방법이다. 이 탐사기법은 1970년대 초반에 광물탐사의 목적으로 시작되어 시추공간 탐사에 비해 적은 비용으로 지 표탐사나 물리검층의 제한된 분해능을 보완할 수 있는 탐사형태로 자리매김해왔다. 본 연구에서는 지 표-시추공간 전자탐사의 효율적인 3차원 해석기술을 직접해법을 이용해 개발하고, 감도분석을 통해 최적의 탐사변수를 설계하는 방안에 대해 살펴보고자 하였다.

직접해의 이용

지표-시추공간 전자탐사는 자료획득구간이 케이싱 영향이 없는 나공(naked hole)에 제한되므로 탐 사설계에 있어서는 다양한 송신원의 고려가 필수적이다. 따라서 컴퓨터 저장용량만 충분하다면 다중 송신원 모델링에 탁월한 직접해법이 적합하다. 본 연구에서는 직접해법을 사용하여 3차원 모델링을 구현하였고 자코비안의 계산에서도 식(1)과 같이 상반성을 이용하여 직접해법의 활용도를 높였다.

$$\frac{\partial H_i}{\partial m_k} = \frac{-1}{i\omega\mu} \int_{\nu_k} \mathbf{E}^S(\mathbf{r} - \mathbf{r}_S) \cdot \mathbf{E}^{M_i}(\mathbf{r} - \mathbf{r}_R) d\mathbf{r}$$
(1)

감도분석

지표-시추공간 전자탐사가 여러 가지 탐사변수에 대해 갖는 감도특성을 살펴보고, 탐사설계에서 활 용가능성을 알아보기 위해서 감도분석을 실시하였다. 감도의 크기를 나타내는 지표로는 식(2)와 같 은 통합감도(integrated sensitivity, Kaputerko et al., 2007)를 사용하였다. 통합감도는 송수신위 치에서 가장 큰 값을 보이며, 식(2)에서와 같이 해당 블록에서의 물성변화가 전체 자료에 미치는 영 향을 의미한다. Fig. 1은 송신위치를 각각 500m, 1000m, 1500m, 2000m으로 설정하였을 때의 감 도분포를 비교한 것으로서, 수신시추공과 송신위치의 적정한 이격거리는 시추공내 최하단 수신점의 심도로 유추해 볼 수 있다. Fig. 2는 송신원 형태에 대한 감도분포의 비교로서 전류송신원의 방향에 따라 송신전자기장의 방사패턴이 달라져서 감도의 공간적 분포에도 차이가 나타남을 확인할 수 있다. 결과적으로 통합감도를 계산하여 3차원 분포를 분석하면 적정수준 이상의 감도를 확보할 수 있도록 탐사변수를 구성할 수 있다.

$$S_{k} = \sqrt{\sum_{i} (J_{ik})^{2}} = \frac{\sqrt{\sum_{i} (J_{ik})^{2}} \delta m_{k}}{\delta m_{k}} = \frac{\sqrt{\sum_{i} (\delta d_{i})^{2}}}{\delta m_{k}} = \frac{\left\|\delta \mathbf{d}\right\|}{\delta m_{k}}$$
(2)

역산에의 활용

Fig. 3은 라그랑지 곱수의 공간적 변화에 대한 가중치로 감도분포를 적용해 본 결과이다. 수치모델링 을 통한 이론자료는 (a)와 같이 7개 송신점에서 1, 10, 100Hz의 세 주파수를 갖는 긴전선전류원을 송신하고 이로부터 2000m 이격된 시추공내의 25개 수신점에서 3성분 자기장을 계산하여 구성하였 다. 감도분포를 라그랑지 곱수계산에 가중치로 적용한 역산결과(Fig. 3(c))는, 라그랑지 곱수가 일 정한 감쇠최소자승법(Fig. 3(b))에 비해 참값에 더욱 수렴하였고 ACB법(Fig.3(d))과도 잘 부합되 는 결과를 얻을 수 있었다.

່ | ອໍ່ | ລໍ່ | ລໍ່ | ດໍ່

Fig. 1. The integrated sensitivity distributions for different positions of the EM source.

(a) HED - x (b) HED - yFig. 2. The integrated sensitivity distributions for different orientations of the EM source.

Fig. 3. Survey geometry and inversion results

참고문헌

Kaputerko A., Gribenko, A., and Zhdanov, M. S., 2007, Sensitivity analysis of marine CSEM surveys, *SEG Annual Meeting*, San Antonio, USA, 609–613.