Π-44

Anti-oxidative activities of sorghum, foxtail millet and proso millet extracts

¹Department of Applied Plant Sciences, Kangwon National University ²Funtional Food & Nutrition Division, Rural Development Administration Ju-Sung Kim^{1*}, Yeo-Jin Sa¹, Myeong-Ok Kim¹, Hyun-Ju Jeong¹, Jinfeng Yang¹, Chang-Yeon Yu¹, Dong-Sik Park², and Myong-Jo Kim¹

Objectives

In this present study, we report the anti-oxidant properties of different cultivars of sorghum, foxtail millet and proso millet. To obtain a better understanding of the potent antioxidant extracts, we determined the amount of phenols and flavonoids in these crops, and analyzed anti-oxidant properties using various assays, including DPPH radical scavenging, ferric ion reducing anti-oxidant power assay and anti-lipid peroxidative effect.

Materials and Methods

° Plant materials

Sorghum (Korean name; susu), foxtail millet (Jo) and proso millet (Gijang) cultivar were provided by the Shinlim Agricultural Cooperative, Wonju-si, Gangwon-do, Korea.

• Methods

DPPH radical scavenging assay Determination of reducing power activity Total phenol and flavonoid analysis Ferric thiocyanate (FTC) test

Results and Discussion

In this study, sorghum, foxtail millet and proso millet extracts were evaluated by various in vitro antioxidant assays, including 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging activity, reducing power by Fe3+-Fe2+ transformation, and anti-lipid peroxidative activity by ferric thiocyanate. The sorghum extract contained high amount of phenolic compounds as well as a high level of antioxidant activity compared with foxtail millet and proso millet extracts. In addition, among the sorghum cultivar, me-susu (Sorghum dochna var. technicum, Snowden) extracts exhibited high levels of free radical scavenging activity, anti-oxidant capacity and anti-lipid peroxidative activity compared with α -tocopherol. Taken together, these findings suggest that me-susu extracts can be considered good sources of natural anti-oxidants.

Corresponding author: Myong-Jo Kim, E-mail: kimmjo@kangwon.ac.kr, Tel: 033-250-6413. This research has been supported in part by the Rural Development Administration of the Bio-Green 21 project (20090101-060-043-001-07-00).

Table 1.	Total	phenolic	content,	total	flavonoid	content	and	DPPH	free	radical	scavenging
activity of sorghum, foxtail millet and proso millet extracts.											

	Cultivar	Remar k	RC_{50}^{a}	TPC ^b	TFC ^c
	Gaebalcha-jo	JO-1	254 ± 10	20.1 ± 0.2	6.7 ± 1.6
	Kkojang-jo	JO-2	$259~\pm~14$	19.4 ± 0.2	9.1 ± 0.8
	Nuzz-jo	JO-3	$270~\pm~11$	18.0 ± 2.3	5.7 ± 0.4
	Mongdang-jo	JO-4	$230~\pm~4.6$	$20.5~\pm~0.4$	3.4 ± 0.2
Foxtail millet (Jo)	Sangjung-jo	JO-5	$267~\pm~12$	17.7 ± 1.1	5.3 ± 0.0
	Shinnalgeori	JO-6	196 ± 6.4	$26.5~\pm~0.8$	$11.5~\pm~0.6$
	Oruncha-jo	JO-7	318 ± 14	$18.4~\pm~0.7$	$5.9~\pm~0.0$
	All-jo	JO-8	$250~\pm~7.5$	$20.5~\pm~0.1$	$6.4~\pm~0.1$
	Bulgun-gijang	GJ-1	122 ± 5.1	$21.6~\pm~0.6$	$8.0~\pm~0.2$
	Byolook-gijang	GJ-2	58 ± 2.2	$26.7~\pm~0.6$	$8.1~\pm~0.2$
Proso millet(Gijang)	Chal-gijang	GJ-3	$297~\pm~6.0$	$12.0~\pm~0.4$	$4.0~\pm~0.1$
	Hwang-gijang	GJ-4	$192~\pm~2.9$	16.0 ± 0.4	$5.5~\pm~0.1$
	Heuin-gijang	GJ-5	$205~\pm~1.7$	$14.5~\pm~0.3$	6.2 ± 0.3
	Mongdang-susu	SS-1	3.1 ± 0.1	$181.5~\pm~2.0$	$29.0~\pm~0.2$
	Me-susu	SS-2	1.9 ± 0.1	$\begin{array}{r} 263.3 \ \pm \\ 16.0 \end{array}$	33.7 ± 0.6
Sorghum(Susu)	Susongsaengi-s usu	SS-3	$6.4~\pm~0.1$	$105.7~\pm~5.9$	$31.5~\pm~0.8$
	Sikyung-susu	SS-4	$4.3~\pm~0.0$	$\begin{array}{r} 153.6 \\ \pm \\ 10.6 \end{array}$	38.1 ± 0.4
	Jangsu-susu	SS-5	$8.4~\pm~0.2$	$72.8~\pm~0.3$	$23.0~\pm~4.7$
	Heuin-susu	SS-6	31 ± 1.4	$28.5~\pm~0.6$	$14.5~\pm~0.0$
	Ascorbic acid		$1.1~\pm~0.0$		
Positive control	a-Tocopherol		$3.3~\pm~0.1$		
rositive control	BHA		$5.0~\pm~0.2$		
	BHT		56 ± 4.3		

^aRC₅₀: Amount required for the 50% reduction of DPPH after 30min.

Each value is mean \pm standard derivation of triplicate experiments.

^bTotal phenol content analyzed as gallic acid equivalent (GAE) mg/g of extract, values are the average of triplicate experiments.

^cTotal flavonoid content analyzed as quercetin equivalent (QE) mg/g of extract, values are the average of triplicate experiments.