분산전원 대응형 전압강하계산 알고리즘 개발

손준호, 지성호, 송석환, 노대석 한국기술교육대학교 e-mail: dsrho@kut.ac.kr

Development of Algorithm for Voltage Drop Calculation Considering Distributed Power Sources

Joonho Son, Seongho Ji, Sukhwan Song and Daeseok Rho Korea University of Technology and Education

요 약

기존의 전압강하 해석방법은 4상한의 전압강하분만 고려하여 계산을 수행하여 분산전원의 연계에 따른 역조류의 영향을 전혀 고려할 수 없어서, 분산전원이 투입하게 되면 전압강하 크기인 스칼라에 방향만 반대로 표시함으로써 전압강하 계산에 큰 오차를 발생시킬 수 있는 문제점을 안고 있다. 따라 서 본 논문에서는 분산전원의 투입에 따라 변하게 되는 역률(Cosੳ)을 고려하여 분산전원 연계에 따 른 역조류의 영향을 수학적인 삼각함수의 좌표평면 해석방법에 기반하여 분산전원의 출력량을 고려 한 분산전원 대응형 전압강하계산 알고리즘을 제안하였다.

1. 서 론

현재 정부의 녹색성장에 맞추어 배전계통에 다수 의 분산전원(태양광, 풍력 등)이 지속적으로 연계되 고 있는 실정이며, 분산전원이 배전계통에 연계되 어 운용되는 경우 크게 3가지 측면에서 문제점이 발생되고 있다. 먼저 정상상태에서의 문제점으로 분산전원 연계에 의한 수용가의 과전압과 전압변동 이 발생하고 있다. 그리고 분산전원의 연계에 의하 여 기존의 배전계통의 사고전류가 변동되어, 보호 협조기기의 정정치 변경 요구, 양방향 보호협조(오 동작/부동작) 문제점이 발생하고 있다. 마지막으로 Sag, Swell, 고조파와 같은 전력품질에 대한 문제 점이 발생하고 있다. 이러한 현상은 태양광전원 정 지현상을 초래하고, 대형모터기동에 의한 태양광전 원영향, 고조파 등을 발생시킨다. 이러한 문제점들 을 해결하기 위한 방안으로 분산전원의 역조류에 대한 전압강하 해석이 반드시 선행되어야 한다. 따 라서 본 논문에서는 분산전원 연계에 따른 역조류 의 영향을 수학적인 삼각함수의 좌표평면 해석방법 에 기반하여 분산전원의 운전상태(출력용량과 역 률)을 고려한 분산전원 대응형 전압강하계산 알고 리즘을 제안한다.

2. 기존의 전압강하 계산 알고리즘

2.1 일반적인 전압강하계산 방법

그림 1은 선로말단에 단일부하가 집중되어 있는 경우, 단상 2선식 배전선로의 등가회로를 나타낸 것이다. 여기서 임피던스는 Z=R+jX이며, *Es*, *Er*은 송전단 및 수전단에서의 전압[V]이며, 전압강하 △V는 식 (1)과 같이 계산 할 수 있다.

$$\Delta V = |Es| - |Er| = I(R\cos\theta + \sin\theta) \tag{1}$$

[그림 1] 일반적인 전압강하 해석 개념도

기존의 전압강하 계산방법은 태양광전원 연계에 따른 역조류 영향을 전혀 고려하지 못한다. 즉, 태 양광전원의 역조류에 대하여 전압강하의 크기(스칼 라)에 방향만 반대로 표시함으로써 태양광전원의 투입에 따라 변하게 되는 역률(Cosθ)을 고려하지 못하여, 태양광전원 연계에 따른 전압강하 계산에 오차가 발생하는 문제점을 가지고 있다.

2.2 역조류 대응형 전압강하 해석법

참고문헌 [1]에서 제시한 방법은 부하전류(I)를 유효전류 분(I_p)과 무효전류 분(I_q)으로 분해하고, 조류 방향(유효전력의 방향)과 역률을 고려하여 4 개의 상한을 모두 고려하여 분산전원의 역조류를 고려한 전압강하계산 알고리즘이다. 그림 2와 같이, 조류 방향(유효전력의 방향)과 무효전력을 적정하 게 반영하여, 전압강하뿐만 아니라 전압상승도 계 산할 수 있다.

[그림 2] 역조류 대응형 전압강하 해석 개념도

그러나 이 계산방법은 삼각함수의 수학적 방식에 서 보면, 진상 역률과 지상 역률의 수직방향이 바 뀌어, 1, 2, 3, 4상한에 따른 역률(cosθ)과 sinθ을 계산하기 이전에 θ = tan-1 (Q/P)를 먼저 구해야 하므로, 계산하기에 복잡하다는 단점을 가지고 있다.

2.3 가우스자이델 반복계산해석법

이 방법은 가우스 자이델 방법을 기반으로 하며 배전계통 전력 조류 계산에 적합하도록 변형된 형 태를 가진다. 배전계통에서의 모선 수가 n이고 모 선 i에서의 전력이 P_i^{sch} 와 Q_i^{sch} 라고 할 때 k 반 복에서의 모선 전압은 가우스자이델 방법에 의해 식(1)과 같이 계산된다.

$$V_{i}^{(k)} = \frac{1}{Y_{ii}} \left\{ \frac{P_{i}^{sch} - jQ_{i}^{sch}}{V_{i}^{(k-1)^{*}}} - \sum_{j=1}^{i-1} Y_{ij}V_{j}^{(k)} - \sum_{j=i+1}^{n} Y_{ij}V_{j}^{(k-1)} \right\}$$
(1)

식 (2)을 모선 i에 대해 행렬 형태로 정리하면 다 음과 같이 나타낼 수 있다.

$$\begin{bmatrix} y_{11} \ y_{12} \cdots \ y_{1i} \cdots \\ y_{21} \ y_{22} \cdots \ y_{2i} \cdots \\ \cdot & \cdot & \cdot \\ y_{i1} \ y_{i2} \cdots \ y_{ii} \cdots \\ \cdot & \cdot & \cdot \end{bmatrix} \begin{bmatrix} V_1^{(k)} \\ V_2^{(k)} \\ \cdot \\ V_i^{(k)} \\ V^{(k-1)} \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \\ \cdot \\ I_i \\ \cdot \end{bmatrix}$$
(2)

식 (3)에서의 어드미턴스 행렬의 각 요소는 아래 와 같은 상 a, b, c의 3×3 행렬이 된다.

$$y_{11} = \begin{bmatrix} y_{11aa} & y_{11ab} & y_{11ac} \\ y_{11ba} & y_{11bb} & y_{11bc} \\ y_{11ca} & y_{11cb} & y_{11cc} \end{bmatrix}$$
(3)

식 (4)의 어드미턴스 행렬을 각 상별로 재 정렬 하면 다음과 같이 나타낼 수 있다.

$$Y_{ABC} = \begin{bmatrix} Y_{AA} & Y_{AB} & Y_{AC} \\ Y_{BA} & Y_{BB} & Y_{BC} \\ Y_{CA} & Y_{CB} & Y_{CC} \end{bmatrix}$$
(4)

식 (5)는 어드미턴스 행렬의 각 요소는 *n×n*크 기의 행렬이 된다. 재 정렬 행렬을 이용하여 회로 방정식을 표현하면 다음과 같다.

$$\begin{bmatrix} Y_{AA} & Y_{AB} & Y_{AC} \\ Y_{BA} & Y_{BB} & Y_{BC} \\ Y_{CA} & Y_{CB} & Y_{CC} \end{bmatrix} \begin{bmatrix} V_A \\ V_B \\ V_C \end{bmatrix} = \begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix}$$
(4)

식 (5)을 가우스 자이델 방법의 기본원리에 따라 풀어 정리하면 다음과 같이 나타낼 수 있다.

$$Y_{AA} V_A^{(k)} + Y_{AB} V_B^{(k-1)} + Y_{AC} V_C^{(k-1)} = I_A$$
(5-1)

$$Y_{BA} V_A^{(k)} + Y_{BB} V_B^{(k)} + Y_{BC} V_C^{(k-1)} = I_B$$
(5-2)

$$Y_{CA} V_A^{(k)} + Y_{CB} V_B^{(k)} + Y_{CC} V_C^{(k)} = I_C$$
(5-3)

식 (6)으로부터 k 반복에서의 각모선 상 전압과 개선 모선 전압을 다음과 같이 계산할 수 있다.

$$\Delta V_A^{(k)} = Y_{AA}^{-1} (I_A - Y_{AB} V_B^{(k-1)} - Y_{AC} V_C^{(k-1)}) \quad (6-1)$$
$$V_A^{(k)} = V_A + \Delta V_A^{(k)} \quad (6-2)$$

$$\mathbf{v}_A = \mathbf{v}_{A,NL} + \Delta \mathbf{v}_A \qquad (0 \ 2)$$

$$\Delta V_B^{(k)} = Y_{BB}^{-1} (I_B - Y_{BA} V_A^{(k)} - Y_{BC} V_C^{(k-1)})$$
(6-3)

$$V_B^{(k)} = V_{B,NL} + \Delta V_B^{(k)}$$
(6-4)

$$\Delta V_C^{(k)} = Y_{CC}^{-1} (I_C - Y_{CA} V_A^{(k)} - Y_{CB} V_B^{(k)})$$
(6-5)

$$V_C^{(k)} = V_{C,NL} + \Delta V_C^{(k)}$$
(6-6)

이상의 절차를 $\Delta V_A^{(k)}, \Delta V_C^{(k)}, \Delta V_C^{(k)}$ 가 수렴 조 건을 만족할 때까지 반복 계산을 수행하여 전압강 하를 구한다.

2.4 Forward-Backward Substitution Method

이 방법은 배전 계통의 각 모선에 대한 순차적인 순서화를 기반으로 계통 말단에서 상위 기준 모선 (변전소)으로의 후방 경로를 따라 각 선로의 전류 를 계산하고 반대로 상위 기준 모선에서 계통 말단 으로 전방 경로를 따라 각 모선전압을 계산하는 방 식이다. 그림 3과 같은 간단한 방사상 배전계통이 있다고 하자. 괄호()는 기준 모선을 시작으로 각 선 로에 부여된 선로 번호이며 원으로 표시된 번호는 최 초 임의로 주어진 모선 번호이다. Forward-Backward Substitution 방법에서는 계산의 효율성을 높이기 위해 사각형으로 표시된 모선번호와 같이 기준모선을 시작으로 해서 새롭게 모선번호 순서화를 먼저 수행 하여야 한다.

[그림 3] 방사상 배전계통의 예

이렇게 순서화가 이루어지고 나면 전방 및 후방 경로를 결정한다. 그림 3의 경우 다음과 같은 경로를 정의할 수 있다.

① 후방 경로 :

10-6, 9-6, 8-5, 7-5, 6-4, 5-4, 4-2, 3-2, 2-1

② 전방 경로 :

1-2, 2-3, 2-4, 4-5, 4-6, 5-7, 5-8, 6-9, 6-10

이렇게 정의된 후방 경로를 따라 각 선로의 전류 를 먼저 계산하고 계산된 전류와 정의된 전방 경로 를 따라 각 모선 전압을 계산하게 된다. 최초 각 모선의 전압 초기값을 정의한다. 전압 초기값은 전 압의 크기 1.0p.u., phase A, B, C 위상각을 0, +120, -120도로 정한다. 다음으로 정의된 후방 경로를 따 라 선로 m의 전류를 식 (7)과 같이 계산한다.

$$\begin{bmatrix} I_a(m) \\ I_b(m) \\ I_c(m) \end{bmatrix} = \begin{bmatrix} I_{La}(i) \\ I_{Lb}(i) \\ I_{Lc}(i) \end{bmatrix} + \sum_{p \in M} \begin{bmatrix} I_{ap} \\ I_{bp} \\ I_{cp} \end{bmatrix}$$
(7)

식 (7)의 $I_a(m), I_b(m), I_c(m)$ 은 선로 m의 각 상 전류를 나타내며 $I_{La}(i), I_{Lb}(i), I_{Lc}(i)$ 는 식(8)로 계 산되는 하위 모선 i에서의 부하 전류를 나타낸다.

$$I_{i} = \left(\frac{P_{i}^{sch} + jQ_{i}^{sch}}{V_{i}}\right)^{*}$$
(8)

I_{ap}, *I_{bp}*, *I_{cp}*는 선로 m에 연결된 하위 선로의 전류
를 나타내며 M은 선로 m에 연결된 하위 선로들의 집합을 의미한다. 예로서 그림 3의 선로 (4)의 경우 (m=4) 하위 모선은 5가 되며 *I_{La}*(5), *I_{Lb}*(5), *I_{Lc}*(5)
은 5번 모선에 연결된 부하 전류를 의미한다. 또한 *I_{ap}*, *I_{bp}*, *I_{cp}*는 선로 (5)와 (6)에서의 전류를 의미한
다. 따라서 p는 5와 6이 된다. 이러한 방식으로 앞서 정의된 후방 경로를 따라 모든 선로의 전류를 계산한다. 다음으로 계산된 선로 전류와 정의된 전
방 경로를 따라 각 모선의 전압을 식 (9)와 같이 계산한다.

$$\begin{bmatrix} V_a(j) \\ V_b(j) \\ V_c(j) \end{bmatrix} = \begin{bmatrix} V_a(i) \\ V_b(i) \\ V_c(i) \end{bmatrix} - \begin{bmatrix} Z_{aa} Z_{ab} Z_{ac} \\ Z_{ba} Z_{bb} Z_{bc} \\ Z_{ca} Z_{cb} Z_{cc} \end{bmatrix} \begin{bmatrix} I_a(m) \\ I_b(m) \\ I_c(m) \end{bmatrix}$$
(9)

여기서 i 및 j는 선로 m의 각 상위, 하위 모선을 나타낸다. 또한 식 (9)에서의 임피던스 행렬은 배전 선로 중성선의 영향을 포함한 고압배전선로 임피던 스 행렬과 같다. 이러한 방식으로 앞서 정의된 전 방 경로를 따라 기준 모선을 제외한 모든 부하 모 선의 전압을 계산한다. 각 모선의 전압을 계산 후 이전 단계의 모선 전압과의 차가 주어진 수렴 오차 한계를 만족하는지를 식 (10)과 같이 검사한다.

$$\Delta V_p^k(j) = V_p^k(j) - V_p^{k-1}(j) \quad \text{for } p = a, b \text{ and } c$$
(10-1)

$$Real(\Delta V(j)) < \varepsilon$$
 (10-2)

$$Imag(\Delta V(j)) < \varepsilon \tag{10-3}$$

모든 모선에서 수렴 조건을 만족하지 않으면 후 방 경로에 따른 선로 전류 계산과 전방 경로에 따 른 모선 전압계산을 반복적으로 수행해 나간다.

3. 분산전원 대응형 전압강하계산 알고리즘

본 연구에서 제시한 분산전원 대응형 전압강하계 산 알고리즘은 그림 2의 수학적인 오류방법을 개선 하여, 그림 4와 같이 수학적인 삼각함수의 좌표평면 해석방법에 기반하여, 유·무효 전력에 따른 피상 전력을 기준으로 역률(Cos⊖)과 Sin⊖의 크기와 방 향을 정하여 계산한다.

[그림 4] 분산전원 대응형 전압강하계산 알고리즘 개념도

특히 선로조건에 따라 6가지의 경우로 해석이 가 능하며, 선로의 전압강하(+△V) 및 상승(-△V)을 쉽게 확인할 수 있고, 전압의 상승 또는 강하분을 계산하여 계통해석이 가능하다. 단거리선로에서의 전압강하 식은△V=I×(Rcosθ+Xsinθ)이다. 유·무효 전력에 따라 역률(Cosθ), Sinθ값이 결정되며, 태양 광전원과 부하용량에 따라 역조류 유·무가 결정되 며, 이 3가지 Parameter(Cosθ, Sinθ, 조류)에 의해 선로 전체의 전압이 상승 또는 하강하게 된다. 그 리고 수직점선을 기준으로 송전단전압(Er)과 수전 단전압(Es)관계에 의한 ±△V값을 좌표에 표시함으 로써 2차원적으로 전압 상승·강하를 쉽게 해석할 수 있다.

표 1의 ①, ⑤, ⑥은 부하용량이 분산전원보다 큰 경우, 유도성부하(+Q)와 용량성부하(-Q)에 대한 전 압 상승·강하의 알고리즘을 나타낸 것이다. 1상한 은 부하용량이 태양광전원보다 큰 경우로 전압강하 만 발생하며, 표 1의 ①지점을 통해서 쉽게 확인할 수 있다. 4상한의 경우에는 2가지의 경우로 나누어 해석할 수 있다. 첫째 선로조건 중 Rcosθ>Xsinθ 일 경우, △V=I×(Rcosθ-Xsinθ)에서 (Rcosθ-Xsin θ)부분이 (+)가 되어 전류(I)가 양수라는 가정 하에 전압강하(+△)로 해석할 수 있으며, 그림 3의 ⑤로 확인할 수 있다. 만약 Rcosθ<Xsinθ인 경우, (Rcos θ-Xsinθ)이 (-)가 되어 전압상승(-△V)으로 해석 할 수 있으며, 이때 수전단 전압(Er)이 송전단 전압 (Es)보다 커짐을 알 수 있고, 표 1의 ⑥으로 확인 할 수 있다.

[표 1]	분산전원의	전압강하특성	분석표(I)
-------	-------	--------	--------

비교	부하용량 > 태양광전원			
조건	유도성 부하(+Q)	용량성 부	루하(-Q)	
상 한 별 벡 터 도	R_{+Q}^{A} R_{+Q}^{A} R_{+Q}^{C} $R_$	지상역률 +Q -P +Q -P +Q -Q 전상역률	$\cos \theta = \frac{P}{S} \Rightarrow +$ $\sin \theta = \frac{-Q}{S} \Rightarrow -$	
선로 조건	Rcos⊖>0, Xsin⊖>0 [①]	Rcos⊖> Xsin⊖ [⑤]	Rcos Θ <xsin<math>\Theta [6]</xsin<math>	
전압강 하식	$ \Delta V = I \times (R \cos \Theta + X \sin \Theta) $	△V=I×(Rcosθ- Xsinθ)		
선로 전압	+△V (전압강하)	+△V (전압 강하)	-△V (전압 상승)	

한편, 표 2의 ②, ③, ④는 부하용량이 분산전원 보다 작은 경우로서, 유도성부하(+Q)와 용량성부하 (-Q)에서의 전압 상승과 전압강하의 알고리즘을 나타낸 것이다. 3상한의 경우, 부하용량이 태양광전 원보다 작아, 분산전원이 전원측으로 공급(역조류) 되어 전압상승이 발생하며, 그림 3의 ④에서 쉽게 확인할 수 있다. 2상한의 경우에는 2가지의 경우로 나누어 해석할 수 있다. 첫째 선로 조건 중 Rcosθ <Xsin 0인 경우, △V=I×(Rcos 0-Xsin 0)에서 (Rcos θ-Xsinθ)부분이 (+)가 되며, 전류(I)는 양수라는 가정 하에 전압강하(+△)로 해석할 수 있으며, 표 2 의 ②로 확인할 수 있다. 만약 Rcosθ>Xsinθ인 경 우, (Rcosθ-Xsinθ)이 (-)가 되어 전압상승(-△V) 으로 해석할 수 있다. 이때 수전단 전압(Er)이 송 전단 전압(Es)보다 커짐을 알 수 있으며, 표 2의 ③에서 확인할 수 있다.

[표 2] 분산전원의 전압강하 특성 분석표(II)

선로 조건	Rcos⊖>0, Xsin⊖>0 [④]	Rcos $\Theta < Xsin \Theta$ [2]	Rcos Θ >Xsin Θ [3]
전압강	∆V=I×(-Rcosθ	△V=I×(-Rcos	
하식	-Xsinθ)	+Xsinθ)	
선로	-△V	+△V	-△V
전압	(전압상승)	(전압강하)	(전압상승)

4. 결 론

본 논문에서는 분산전원이 연계됨으로써 변하게 되는 분산전원의 출력용량과 역률(Cosθ)을 고려하 여, 분산전원 투입에 따른 역조류의 영향을 수학적 인 삼각함수의 좌표평면 해석방법에 기반한 분산전 원 대응형 전압강하계산 알고리즘을 제안하여, 기 존의 전압강하 계산수법을 개선하였다.

참고문헌

- H. Soi, H. Yakabe, H. Kakimoto, T. Hayashi & M. Kanori, "Development of High Voltage Distribution Line Management System", IEEJP & Society, No.32 (1995)
- [2] 노 대석 외 3인, "저압 배전선로에 연계된 태양광
 발전의 정상상태 특성연구", 대한전기학회 전력기술
 부 문회 전력계통연구회 춘계학술대회 논문집,
 2010.5
- [3] 송길영, "최신 송배전공학", 동일출판사
- [4] 노 대석 외 3인, "저압 배전선로에 연계된 태양광발
 전의 정상상태 특성연구", 대한전기학회 전력기술부
 문회 전력계통연구회 춘계학술대회 논문집, 2010.5