Proceedings of the Korea Water Resources Association Conference (한국수자원학회:학술대회논문집)
- 2010.05a
- /
- Pages.357-361
- /
- 2010
Expected Probability Weighted Moment Estimator for Censored Flood Data
절단된 홍수 자료에 대한 확률가중적률 추정량
Abstract
미래의 연별 최대 강수량 예측의 정확성을 향상시키는데 역사적 자료가 도움이 된다는 많은 연구 결과가 있었다. 관측의 오차와 자료의 손실로 역사자료를 이용한 강수 예측 방법은 절단자료의 분석을 중심으로 연구되었다. 대표적인 역사자료의 이용방법으로 조건부 적률을 이용한 B17B [Interagency Committee in Water Data, 1982], 조건부적률과적률 관계식을 이용한 Expected Moment Algorithm(EMA) [Cohn et al.;1997], 조건부 확률가중적률을 이용한 Partial Probability Weighted Moment (PPWM)[Wang ; 1991] 방법이 있다. 본 연구에서는 역사적 자료를 반영하는 방법에 있어 B17B와 EMA의 관계를 밝히고 그러한 관계가 PPWM에 동일하게 적용할 수 있음을 보였다. 우리는 B17B와 EMA의 관계를 적률방정식으로 표현하였고 PPWM에서 확률가중 적률 방정식을 정의함으로써 PPWM을 확장하였다. 본 연구에서 제안한 새로운 역사 자료를 이용한 강수예측 방법론을 Expected Probability Weighted Momemt (EPWM) 방법이라고 부르고 그 예측 방법의 성능을 다른 예측방법과 시뮬레이션 결과를 통해 비교하였다. 역사 자료 방법론의 비교는 Generalized Extreme Value (GEV) 분포를 이용하여 이루어졌으며, 각 방법론은 GEV분포의 형태모수(shape parameter)따라 다른 특성을 나타난다는 것을 보였다. 뿐만 아니라 여기서 제안한 EPWM 방법은 대부분의 경우에 좋은 추정량을 준다는 것을 보였다.