A Lattice Model Based on Molecular Clusters for Supercritical Fluids

초임계 유체를 위한 분자 클러스터 기반의 격자모델

  • 신문삼 (청운대학교 화장품과학과)
  • Published : 2010.05.28

Abstract

A semi-empirical fluctuation term is presented to improve a classical equation of state (EOS) for volumetric properties in the critical region. The term is based on the two assumptions: (1) The Helmholtz energy is individually divided into classical and long-range density fluctuation contribution (2) All molecules form cluster near the critical region due to long-range density fluctuation. To formulate such molecular cluster, we extended the Veytsman statistics originally developed for the cluster due to hydrogen bonding. The probability function in the statistics is modified to represent the characteristics of long-range density fluctuation vanishing far from critical region. The proposed fluctuation contribution was incorporated into the Sanchez-Lacombe EOS and the combined model with 6 adjustable parameters has been tested against experimental VLE data. The combined model is found to well represent flatten critical isotherm for methane and top of the coexistence curve for the tested components. The prediction results for caloric data are in good agreement with the experimental data.

Keywords