단일 유로 양면에 anode 를 구비하는 휴대용 PEM 연료전지 스택 개발 Development of mobile PEMFC stack with 2 anode on the both sides of an hydrogen channel

*이세원 ¹, [#]박민수 ², 이강인 ¹, 주종남 ¹

*S. W. Lee¹, *M. S. Park(pminsoo@snut.ac.kr)², K. I. Lee¹, C. N. Chu¹ 서울대학교 기계항공공학부, ²서울산업대학교 제품설계금형공학과

Key words: PEMFC, mobile fuel cell, stack, both side anode

1. 서론

최근 랩탑 컴퓨터, 스마트폰, 타블렛 PC 등 휴대용 전자기기들의 기능이 향상되면서 소비 전력이 늘어나고, 이에 따라 배터리 등의 전력 공급 장치도 더 큰 용량이 요구되고 있다. 이러한 요구에 대하여 수소 연료 전지는 유력한 대안으로 대두되고 있다. 특히 리튬 이온 배터리에 비해 에너지 저장 밀도가 월등히 크기 때문에 휴대용 기기의사용 시간을 늘릴 수 있다.[1]

수소 연료전지는 이론적으로 낼 수 있는 전압이 1.229 V 이기 때문에 일반적으로 적충하여 직렬 연결하여 사용한다.[2] 적충 방법에는 수직 적충, 수평 적충 방식이 있다. 수직 적충 방식은 제작 및 조립이 쉽기 때문에 연료 전지는 일반적으로 수직 적충 방식을 이용한다. 하지만 수직 적충 방식은 전체 두께가 커져 휴대 기기에 적용하기 쉽지않기 때문에 휴대용 전원에는 주로 수평 적충 방식이 적용되고 있다.

2. 유로의 역할과 수평 적층의 한계

연료전지에 있어서 유로는 연료의 전달 뿐만 아니라 반 응열의 전달 및 배출, 반응 생성물의 배출 등 여러 가지 역할을 한다.[3] 유로의 역할이 중요한 만큼 유로의 길이는 연료전지 성능에 매우 큰 영향을 미친다. 유로의 길이를 따라 연료와 생성물의 속도와 분압이 변화하고, 열전달에 의해 온도 차이도 나기 때문에 결국 유로를 따라 성능 차 이가 발생하게 된다.[4,5] 또한 유로 길이에 따른 여러 요소 들의 변화는 맴브래인 전도율(membrane conductivity)에도 변 화를 주어 유로 길이에 따라 전압 손실(voltage lose)에 차이 를 보이게 된다.[5,6] 유로의 길이를 따른 성능 차이는 전지 의 온도나 출력 전류에 따라 정도의 차이가 있을 뿐 항상 존재한다.[7] 따라서 유로를 짧게 하면 유로 길이에 따른 전류 밀도의 편차를 줄일 수 있고, 이는 전지 내의 온도 차이, 맴브래인 전도율 차이, 물 응결의 차이를 줄여 결국 연료전지의 성능을 향상시키고 내구성을 향상시킬 수 있 다.[8]

하지만 단위 전지들이 유로를 따라 수평으로 배치되는 수평 적충 방식은 적충하는 단위 전지가 많아짐에 따라 필 연적으로 유로가 길어질 수 밖에 없다. 따라서 적충하는 전지가 늘어날수록 위에 언급된 문제들이 발생한다. 또한 성능이 저하된 부분에 위치한 단위 전지는 단순 성능 저하 뿐만 아니라, 단위 전지 자체가 작동하지 않는 경우도 발 생한다. 이처럼 수평 적충 방식의 연료 전지에서는 유로 길이를 짧게 하여 전체 성능을 향상시키는데 한계가 있다.

3. 단일 유로 양면에 anode 를 구비하는 연료 전지

본 연구에서는 길이가 한정된 유로에 더 많은 단위 전지를 적충하기 위해 단일 수소 유로 양면에 단위 전지를 배치했다. Fig. 1 (a)와 같이 유로의 한쪽 면에서만 반응하는 일반적인 연료 전지와 달리, Fig. 1 (b)처럼 하나의 수소 유로 양쪽에 anode 반응면을 배치하여 동시에 두 면에서 반응할 수 있도록 하였다.

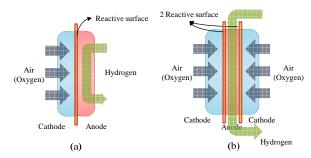


Fig. 1 Schematic diagram of fuel cell; (a) general air-breathing fuel cell, (b) air-breathing fuel cell with 2 anodes

이와 같은 구조를 위해 특수한 형태의 수소 유로판을 설계하였다. 일반적으로 유로판은 전류 컬렉터(current collector)의 역할을 겸하기 위해 그라파이트, 금속 등의 도 체 소재로 만든다. 하지만 수평 적층 연료전지는 반대로 단위 전지간 통전을 막기 위해 부도체 소재를 사용한다. 수소 유로판은 전지간의 전기 절연을 위해 열경화성 수지 인 두께 1mm 베이클라이트(Bakelite)를 레이저 가공하여 만 들었다. Cathode 판은 조립시의 변형을 줄이기 위해 두께 2mm 알루미늄 재질의 판을 밀렁(milling) 가공한 후, 아노 다이징(anodizing)하여 사용하였다. MEA 는 BCS 社의 상용 제품을 사용하였다.

총 8 개의 단위 전지를 적층하였다. 4 개의 단위 전지를 밴디드(banded) 형식으로 수평 적층한 후, 이를 수소 유로 양면에 배치하였다. 이때 전류 컬렉터는 연성 기판을 사용 하여 밴디드 형식의 구조를 간략화하였다.[9] Fig. 2는 조립 된 연료 전지이다. 그림에서 볼 수 있듯이, 양쪽 모두 cathode 가 있어 양면에서 반응을 할 수 있다.

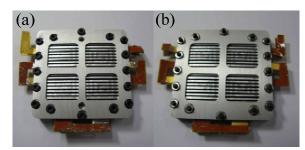


Fig. 2 PEM fuel cell with 2 anodes on the both sides of an hydrogen channel; (a) front cathode side, (b) rear cathode side

4. 성능 실험 및 결과

Table 1 experimental and operating condition

Anode	- Hydrogen gas 50 sccm
Cathode	 Ambient air(air-breathing)
	- Temperature: 23 ± 2 °C
	- Humidity: 27 ± 3%RH
Heating	- Self heating by reactive heat
	(no artificial heating)
Humidification	 No artificial humidifying

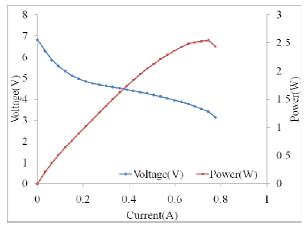


Fig. 3 Performance of PEMFC stack with 2 anodes on the both sides of an hydrogen channel

Table 1 과 같은 실험 조건에서 성능을 측정하였다. Fig. 3 은 제작된 측정한 연료 전지의 성능을 polarizaion 선도로나타낸 것이다. 최대 성능은 2.54 W 이고 이때의 전류는 746 mA 였다. 이를 부피당, 무게당 출력 밀도로 나타내면 200 mW/cc, 98.4 mW/g 이다.

제작된 연료전지의 성능과 일반적인 수평 적층식 연료 전지의 성능을 비교해보았다. Fig. 4 (a)에서 볼 수 있듯이 출 력 면에서 약 23.9% 성능이 향상한 것을 확인할 수 있다. 성능 향상 요인을 규명하기 위해 적층한 각 단위 전지의 성능을 일정 전류 조건에서 개별적으로 측정하였다. Fig. 4 (b)는 그 결과를 평균 전압과 표준 오차를 나타낸 그림이다. 전류 조건에 따라 약간의 차이는 있지만 양면에서 반응이 일어나는 경우 일반 연료 전지에 비해 단위 전지간의 오차 가 0.5 배 정도로 성능 차이가 작은 것을 확인할 수 있다. 반면 양면에서 반응이 발생할 때 평균적으로 더 큰 출력 전압을 보였다.

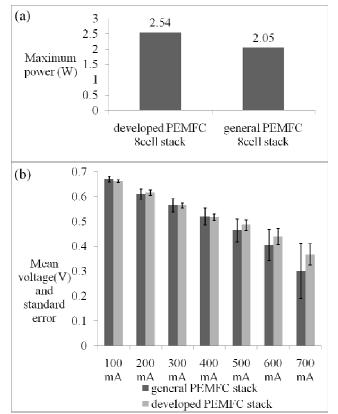


Fig. 4 Performance comparison with general PEMFC stack; (a) maximum power, (b) Mean voltage of unit cells and standard error

이러한 경향은 출력 전류가 높아질수록 도드라지는데, 이는 높은 전류 조건에서 연료 소비가 많고, 반응 생성물 도 많아 유로 길이에 따른 변화가 크기 때문이다.

5. 결론

본 연구에서는 단일 유로 양면에 anode 를 구비하여 유로의 양면에서 반응을 일으킬 수 있고, 일반적인 적층 방식보다 짧은 유로를 구성할 수 있는 연료 전지를 개발하였다. 짧은 유로는 전지 내의 온도, 맴브래인의 전도율, 물응결량 등의 차이를 줄일 수 있어, 각 단위 전지간의 성능차이를 줄이고 결국 연료 전지 전체의 성능을 향상시킬 수 있다.

제작된 연료전지는 2.54 W(200 mW/cc, 98.4 mW/g)의 전력을 출력하였다. 이는 일반적인 적층 방식의 연료 전지와비교하여 약 23.9% 향상된 성능이다. 반응면을 양쪽에 배치함으로써 전체 유로가 짧게 설계되어, 전지 내부의 반응조건들의 편차를 줄여 성능을 향상시킬 수 있었다. 이는각 단위 전지의 성능을 개별적으로 측정하여 확인할 수 있었다.

참고문헌

- 1. C. K. Dyer, "Fuel cells for portable applications," J. Power sources, 106, 31-34, 2002
- Ryan O'Hayre, Suk-Won Cha, Whitney Colella, Fritz B. Prinz, "Fuel cell fundamentals," John Wiley & Sons, 2006.
- Shiang-Wuu Perng, Horng-Wen Wu, "Heat transfer in a PEMFC flow channel," Applied thermal engineering, 29, 3579-3594, 2009
- Wang Ying, Jian Ke, Won-Yong Lee, Tae-Hyun Yang, Chang-Soo Kim., "Effects of cathode channel configurations on the performance of air-breathing PEMFC," Int. J. Hydrogen Energy, 30, 1351-1361, 2005.
- Galip H. Guvelioglu, Harvey G. Stenger, "Flowrate and humidification on a PEM fuel cell performance and operation,"
 J. Power sources, 163, 822-891, 2006
- Luis Matamoros, Dieter Bruggemann, "Concentration and ohmic losses in free-breathing PEMFC," J. Power sources, 173, 367-374, 2007
- Matti Noponen, Tuomas Mennola, Mikko Mikkola, Tero Hottinen, Peter Lund, "Measeurement of current distribution in a free-breathing PEMFC," J. Power sources, 106, 304-312, 2002
- S. Shimpalee, S. Greenway, J. W. Van Zee, "The impact of channel path length on PEMFC flow-field design," J. Power sources, 160, 398-406, 2006
- Sung Han Kim, Hye Yeon Cha, Craig M. Miesse, Jae Hyuk Jang, Yong Soo Oh, Suk Won Cha, "Air-breathing miniature planar stack using the flexible printed circuit board as a current collector," Int. J. Hydrogen Energy, 34, 459-466, 2009